## "Abstract" definitions """ AbstractFPGroup An Abstract type representing finitely presented groups. Every instance must implement * `KnuthBendix.alphabet(G::MyFPGroup)` * `rewriting(G::MyFPGroup)` : return the rewriting object which must implement > `KnuthBendix.rewrite!(u, v, rewriting(G))`. E.g. for `G::FreeGroup` `alphabet(G)` is returned, which amounts to free rewriting. * `ordering(G::MyFPGroup)[ = KnuthBendix.ordering(rewriting(G))]` : return the (implicit) ordering for the alphabet of `G`. * `relations(G::MyFPGroup)` : return a set of defining relations. AbstractFPGroup may also override `word_type(::Type{MyFPGroup}) = Word{UInt8}`, which controls the word type used for group elements. If a group has more than `255` generators you need to define e.g. > `word_type(::Type{MyFPGroup}) = Word{UInt16}` """ abstract type AbstractFPGroup <: GroupsCore.Group end word_type(G::AbstractFPGroup) = word_type(typeof(G)) # the default: word_type(::Type{<:AbstractFPGroup}) = Word{UInt8} """ rewriting(G::AbstractFPGroup) Return a "rewriting object" for elements of `G`. The rewriting object must must implement KnuthBendix.rewrite!(u::AbstractWord, v::AbstractWord, rewriting(G)) For example if `G` is a `FreeGroup` then `alphabet(G)` is returned which results in free rewriting. For `FPGroup` a rewriting system is returned which may (or may not) rewrite word `v` to its normal form (depending on e.g. its confluence). """ function rewriting end KnuthBendix.ordering(G::AbstractFPGroup) = ordering(rewriting(G)) KnuthBendix.alphabet(G::AbstractFPGroup) = alphabet(ordering(G)) Base.@propagate_inbounds function (G::AbstractFPGroup)( word::AbstractVector{<:Integer}, ) @boundscheck @assert all( l -> 1 <= l <= length(alphabet(G)), word, ) return FPGroupElement(word_type(G)(word), G) end ## Group Interface Base.one(G::AbstractFPGroup) = FPGroupElement(one(word_type(G)), G) Base.eltype(::Type{FPG}) where {FPG<:AbstractFPGroup} = FPGroupElement{FPG,word_type(FPG)} include("iteration.jl") GroupsCore.ngens(G::AbstractFPGroup) = length(G.gens) function GroupsCore.gens(G::AbstractFPGroup, i::Integer) @boundscheck 1 <= i <= GroupsCore.ngens(G) l = alphabet(G)[G.gens[i]] return FPGroupElement(word_type(G)([l]), G) end GroupsCore.gens(G::AbstractFPGroup) = [gens(G, i) for i in 1:GroupsCore.ngens(G)] # TODO: ProductReplacementAlgorithm function Base.rand( rng::Random.AbstractRNG, rs::Random.SamplerTrivial{<:AbstractFPGroup}, ) l = rand(10:100) G = rs[] nletters = length(alphabet(G)) return FPGroupElement(word_type(G)(rand(1:nletters, l)), G) end Base.isfinite(::AbstractFPGroup) = ( @warn "using generic isfinite(::AbstractFPGroup): the returned `false` might be wrong"; false ) ## FPGroupElement abstract type AbstractFPGroupElement{Gr} <: GroupElement end mutable struct FPGroupElement{Gr<:AbstractFPGroup,W<:AbstractWord} <: AbstractFPGroupElement{Gr} word::W savedhash::UInt parent::Gr FPGroupElement( word::W, G::AbstractFPGroup, hash::UInt=UInt(0), ) where {W<:AbstractWord} = new{typeof(G),W}(word, hash, G) FPGroupElement{Gr,W}(word::AbstractWord, G::Gr) where {Gr,W} = new{Gr,W}(word, UInt(0), G) end Base.show(io::IO, ::Type{<:FPGroupElement{Gr}}) where {Gr} = print(io, FPGroupElement, "{$Gr, …}") word(f::AbstractFPGroupElement) = f.word #convenience KnuthBendix.alphabet(g::AbstractFPGroupElement) = alphabet(parent(g)) function Base.show(io::IO, f::AbstractFPGroupElement) f = normalform!(f) return KnuthBendix.print_repr(io, word(f), alphabet(f)) end ## GroupElement Interface for FPGroupElement Base.parent(f::AbstractFPGroupElement) = f.parent function Base.:(==)(g::AbstractFPGroupElement, h::AbstractFPGroupElement) @boundscheck @assert parent(g) === parent(h) normalform!(g) normalform!(h) hash(g) != hash(h) && return false return equality_data(g) == equality_data(h) end function Base.deepcopy_internal(g::FPGroupElement, stackdict::IdDict) return FPGroupElement(copy(word(g)), parent(g), g.savedhash) end function Base.inv(g::GEl) where {GEl<:AbstractFPGroupElement} G = parent(g) return GEl(inv(word(g), alphabet(G)), G) end function Base.:(*)(g::GEl, h::GEl) where {GEl<:AbstractFPGroupElement} @boundscheck @assert parent(g) === parent(h) return GEl(word(g) * word(h), parent(g)) end GroupsCore.isfiniteorder(g::AbstractFPGroupElement) = isone(g) ? true : ( @warn "using generic isfiniteorder(::AbstractFPGroupElement): the returned `false` might be wrong"; false ) # additional methods: Base.isone(g::AbstractFPGroupElement) = (normalform!(g); isempty(word(g))) ## Free Groups struct FreeGroup{T,O} <: AbstractFPGroup gens::Vector{T} ordering::O function FreeGroup(gens, ordering::KnuthBendix.WordOrdering) @assert length(gens) == length(unique(gens)) @assert all(l -> l in alphabet(ordering), gens) return new{eltype(gens),typeof(ordering)}(gens, ordering) end end FreeGroup(gens, A::Alphabet) = FreeGroup(gens, KnuthBendix.LenLex(A)) function FreeGroup(A::Alphabet) @boundscheck @assert all( KnuthBendix.hasinverse(l, A) for l in A ) gens = Vector{eltype(A)}() invs = Vector{eltype(A)}() for l in A l ∈ invs && continue push!(gens, l) push!(invs, inv(l, A)) end return FreeGroup(gens, A) end function FreeGroup(n::Integer) symbols = Symbol[] inverses = Int[] sizehint!(symbols, 2n) sizehint!(inverses, 2n) for i in 1:n push!(symbols, Symbol(:f, i), Symbol(:F, i)) push!(inverses, 2i, 2i - 1) end return FreeGroup(symbols[1:2:2n], Alphabet(symbols, inverses)) end Base.show(io::IO, F::FreeGroup) = print(io, "free group on $(ngens(F)) generators") # mandatory methods: KnuthBendix.ordering(F::FreeGroup) = F.ordering rewriting(F::FreeGroup) = alphabet(F) # alphabet(F) = alphabet(ordering(F)) relations(F::FreeGroup) = Pair{eltype(F),eltype(F)}[] # GroupsCore interface: # these are mathematically correct Base.isfinite(::FreeGroup) = false GroupsCore.isfiniteorder(g::AbstractFPGroupElement{<:FreeGroup}) = isone(g) ? true : false ## FP Groups struct FPGroup{T,RW,S} <: AbstractFPGroup gens::Vector{T} relations::Vector{Pair{S,S}} rw::RW end relations(G::FPGroup) = G.relations rewriting(G::FPGroup) = G.rw function FPGroup( G::AbstractFPGroup, rels::AbstractVector{<:Pair{GEl,GEl}}; ordering=KnuthBendix.ordering(G), kwargs... ) where {GEl<:FPGroupElement} for (lhs, rhs) in rels @assert parent(lhs) === parent(rhs) === G end word_rels = [word(lhs) => word(rhs) for (lhs, rhs) in [relations(G); rels]] rws = KnuthBendix.RewritingSystem(word_rels, ordering) rws = KnuthBendix.knuthbendix(rws, KnuthBendix.Settings(; kwargs...)) return FPGroup(G.gens, rels, KnuthBendix.IndexAutomaton(rws)) end function Base.show(io::IO, ::MIME"text/plain", G::FPGroup) print(io, "Finitely presented group generated by:\n\t{") Base.print_array(io, permutedims(gens(G))) println(io, " },") println(io, "subject to relations:") return Base.print_array(io, relations(G)) end function Base.show(io::IO, G::FPGroup) print(io, "⟨") Base.print_array(io, permutedims(gens(G))) println(io, " | ") print(io, "\t ") Base.print_array(io, permutedims(relations(G))) return print(io, " ⟩") end Base.show(io::IO, ::Type{<:FPGroup{T}}) where {T} = print(io, FPGroup, "{$T, …}") ## GSymbol aka letter of alphabet abstract type GSymbol end Base.literal_pow(::typeof(^), t::GSymbol, ::Val{-1}) = inv(t) function subscriptify(n::Integer) subscript_0 = Int(0x2080) # Char(0x2080) -> subscript 0 return join([Char(subscript_0 + i) for i in reverse(digits(n))], "") end