export WreathProduct, WreathProductElem ############################################################################### # # WreathProduct / WreathProductElem # ############################################################################### doc""" WreathProduct <: Group > Implements Wreath product of a group N by permutation (sub)group P < Sₖ, > usually written as $N \wr P$. > The multiplication inside wreath product is defined as > (n, σ) * (m, τ) = (n*ψ(σ)(m), σ*τ), > where ψ:P → Aut(Nᵏ) is the permutation representation of Sₖ restricted to P. # Arguments: * `::Group` : the single factor of group N * `::PermutationGroup` : full PermutationGroup """ immutable WreathProduct{T<:Group} <: Group N::DirectProductGroup{T} P::PermGroup function WreathProduct(G::Group, P::PermGroup) N = DirectProductGroup(G, P.n) return new(N, P) end end immutable WreathProductElem{T<:GroupElem} <: GroupElem n::DirectProductGroupElem{T} p::perm # parent::WreathProduct function WreathProductElem(n::DirectProductGroupElem, p::perm) length(n.elts) == parent(p).n || throw("Can't form WreathProductElem: lengths differ") return new(n, p) end end ############################################################################### # # Type and parent object methods # ############################################################################### elem_type{T<:Group}(G::WreathProduct{T}) = WreathProductElem{G.N.n, elem_type(T)} parent_type{T<:GroupElem}(::WreathProductElem{T}) = WreathProduct{parent_type(T)} parent(g::WreathProductElem) = WreathProduct(parent(g.n[1]), parent(g.p)) ############################################################################### # # WreathProduct / WreathProductElem constructors # ############################################################################### WreathProduct{T<:Group}(G::T, P::PermGroup) = WreathProduct{T}(G, P) WreathProductElem{T<:GroupElem}(n::DirectProductGroupElem{T}, p::perm) = WreathProductElem{T}(n, p) ############################################################################### # # Parent object call overloads # ############################################################################### function (G::WreathProduct)(g::WreathProductElem) n = try G.N(g.n) catch throw("Can't coerce $(g.n) to $(G.N) factor of $G") end p = try G.P(g.p) catch throw("Can't coerce $(g.p) to $(G.P) factor of $G") end elt = WreathProductElem(n, p) # elt.parent = G return elt end doc""" (G::WreathProduct)(n::DirectProductGroupElem, p::perm) > Creates an element of wreath product `G` by coercing `n` and `p` to `G.N` and > `G.P`, respectively. """ function (G::WreathProduct)(n::DirectProductGroupElem, p::perm) result = WreathProductElem(n,p) result.parent = G return result end (G::WreathProduct)() = G(G.N(), G.P()) doc""" (G::WreathProduct)(p::perm) > Returns the image of permutation `p` in `G` via embedding `p -> (id,p)`. """ (G::WreathProduct)(p::perm) = G(G.N(), p) doc""" (G::WreathProduct)(n::DirectProductGroupElem) > Returns the image of `n` in `G` via embedding `n -> (n,())`. This is the > embedding that makes sequence `1 -> N -> G -> P -> 1` exact. """ (G::WreathProduct)(n::DirectProductGroupElem) = G(n, G.P()) ############################################################################### # # Basic manipulation # ############################################################################### function deepcopy_internal(g::WreathProductElem, dict::ObjectIdDict) G = parent(g) return G(deepcopy(g.n), deepcopy(g.p)) end function hash(G::WreathProduct, h::UInt) return hash(G.N, hash(G.P, hash(WreathProduct, h))) end function hash(g::WreathProductElem, h::UInt) return hash(g.n, hash(g.p, hash(parent(g), h))) end ############################################################################### # # String I/O # ############################################################################### function show(io::IO, G::WreathProduct) print(io, "Wreath Product of $(G.N.factors[1]) and $(G.P)") end function show(io::IO, g::WreathProductElem) # println(io, "Element of WreathProduct over $T of size $(size(X)):") # show(io, "text/plain", matrix_repr(X)) print(io, "($(g.n)≀$(g.p))") end ############################################################################### # # Comparison # ############################################################################### function (==)(G::WreathProduct, H::WreathProduct) G.N == H.N || return false G.P == H.P || return false return true end function (==)(g::WreathProductElem, h::WreathProductElem) parent(g) == parent(h) || return false g.n == h.n || return false g.p == h.p || return false return true end ############################################################################### # # Binary operators # ############################################################################### function wreath_multiplication(g::WreathProductElem, h::WreathProductElem) parent(g) == parent(h) || throw("Can not multiply elements from different groups!") G = parent(g) w = G.N((h.n).elts[inv(g.p).d]) return G(g.n*w, g.p*h.p) end doc""" *(g::WreathProductElem, h::WreathProductElem) > Return the wreath product group operation of elements, i.e. > > g*h = (g.n*g.p(h.n), g.p*h.p), > > where g.p(h.n) denotes the action of `g.p::perm` on > `h.n::DirectProductGroupElem` via standard permutation of coordinates. """ (*)(g::WreathProductElem, h::WreathProductElem) = wreath_multiplication(g,h) ############################################################################### # # Inversion # ############################################################################### doc""" inv(g::WreathProductElem) > Returns the inverse of element of a wreath product, according to the formula > g^-1 = (g.n, g.p)^-1 = (g.p^-1(g.n^-1), g.p^-1). """ function inv(g::WreathProductElem) G = parent(g) w = G.N(inv(g.n).elts[g.p.d]) return G(w, inv(g.p)) end ############################################################################### # # Misc # ############################################################################### matrix_repr(g::WreathProductElem) = Any[matrix_repr(g.p) g.n] function elements(G::WreathProduct) iter = Base.product(collect(elements(G.N)), collect(elements(G.P))) return (G(n)*G(p) for (n,p) in iter) end order(G::WreathProduct) = order(G.P)*order(G.N)