using GroupsCore # using Groups # import Groups.AbstractFPGroup import KnuthBendix import KnuthBendix: AbstractWord, Alphabet, Word, RewritingSystem import KnuthBendix: alphabet using Random ## "Abstract" definitions """ AbstractFPGroup An Abstract type representing finitely presented groups. Every instance `` must implement * `KnuthBendix.alphabet(G::MyFPGroup)` * `rewriting(G::MyFPGroup)` : return the rewriting object which must implement > `KnuthBendix.rewrite_from_left!(u, v, rewriting(G))`. By default `alphabet(G)` is returned, which amounts to free rewriting in `G`. * `relations(G::MyFPGroup)` : return a set of defining relations. AbstractFPGroup may also override `word_type(::Type{MyFPGroup}) = Word{UInt16}`, which controls the word type used for group elements. If if your group has less than `255` generators you may define > `word_type(::Type{MyFPGroup}) = Word{UInt8}` """ abstract type AbstractFPGroup <: GroupsCore.Group end word_type(G::AbstractFPGroup) = word_type(typeof(G)) # the default: word_type(::Type{<:AbstractFPGroup}) = Word{UInt16} rewriting(G::AbstractFPGroup) = alphabet(G) function (G::AbstractFPGroup)(word::AbstractVector{<:Integer}) @boundscheck @assert all(l -> 1<= l <=length(KnuthBendix.alphabet(G)), word) return FPGroupElement(word_type(G)(word), G) end ## Group Interface Base.one(G::AbstractFPGroup) = FPGroupElement(one(word_type(G)), G) Base.eltype(::Type{FPG}) where {FPG<:AbstractFPGroup} = FPGroupElement{FPG, word_type(FPG)} struct FPGroupIter{GEl} elts::Vector{GEl} seen::Set{GEl} u::GEl v::GEl end FPGroupIter(G::AbstractFPGroup) = FPGroupIter([one(G)], Set([one(G)]), one(G), one(G)) Base.iterate(G::AbstractFPGroup) = one(G), (FPGroupIter(G), 1, 1) @inline function Base.iterate(G::AbstractFPGroup, state) iter, elt_idx, gen_idx = state if gen_idx > length(alphabet(G)) elt_idx == length(iter.elts) && return nothing gen_idx = 1 elt_idx += 1 end res = let (u, v) = (iter.u, iter.v), elt = iter.elts[elt_idx] copyto!(v, elt) # this invalidates normalform of v @assert !isnormalform(v) push!(word(v), gen_idx) resize!(word(u), 0) normalform!(u, v) end if res in iter.seen return iterate(G, (iter, elt_idx, gen_idx+1)) else w = deepcopy(res) @assert isnormalform(w) push!(iter.elts, w) push!(iter.seen, w) state = (iter, elt_idx, gen_idx+1) return w, state end end # the default: # Base.IteratorSize(::Type{<:AbstractFPGroup}) = Base.SizeUnknown() GroupsCore.ngens(G::AbstractFPGroup) = length(G.gens) function GroupsCore.gens(G::AbstractFPGroup, i::Integer) @boundscheck 1<=i<=GroupsCore.ngens(G) l = alphabet(G)[G.gens[i]] return FPGroupElement(word_type(G)([l]), G) end GroupsCore.gens(G::AbstractFPGroup) = [gens(G, i) for i in 1:GroupsCore.ngens(G)] # TODO: ProductReplacementAlgorithm function Base.rand( rng::Random.AbstractRNG, rs::Random.SamplerTrivial{<:AbstractFPGroup}, ) l = rand(10:100) G = rs[] nletters = length(alphabet(G)) return FPGroupElement(word_type(G)(rand(1:nletters, l)), G) end ## FPGroupElement mutable struct FPGroupElement{G<:AbstractFPGroup, W<:AbstractWord} <: GroupElement word::W savedhash::UInt parent::G FPGroupElement(word::W, G::AbstractFPGroup) where W<:AbstractWord = new{typeof(G), W}(word, UInt(0), G) FPGroupElement(word::W, hash::UInt, G::AbstractFPGroup) where W<:AbstractWord = new{typeof(G), W}(word, hash, G) end word(f::FPGroupElement) = f.word #convenience KnuthBendix.alphabet(g::FPGroupElement) = alphabet(parent(g)) function Base.show(io::IO, f::FPGroupElement) f = normalform!(f) print(io, KnuthBendix.string_repr(word(f), alphabet(f))) end ## GroupElement Interface for FPGroupElement Base.parent(f::FPGroupElement) = f.parent GroupsCore.parent_type(::Type{<:FPGroupElement{G}}) where G = G function Base.:(==)(g::FPGroupElement, h::FPGroupElement) @boundscheck @assert parent(g) === parent(h) normalform!(g) normalform!(h) hash(g) != hash(h) && return false return word(g) == word(h) end function Base.deepcopy_internal(g::FPGroupElement, stackdict::IdDict) return FPGroupElement(copy(word(g)), g.savedhash, parent(g)) end Base.inv(g::FPGroupElement) = (G = parent(g); FPGroupElement(inv(alphabet(G), word(g)), G)) function Base.:(*)(g::FPGroupElement, h::FPGroupElement) @boundscheck @assert parent(g) === parent(h) return FPGroupElement(word(g)*word(h), parent(g)) end GroupsCore.isfiniteorder(g::FPGroupElement) = isone(g) ? true : throw("Not Implemented") # additional methods: Base.isone(g::FPGroupElement) = (normalform!(g); isempty(word(g))) ## Free Groups struct FreeGroup{T} <: AbstractFPGroup gens::Vector{T} alphabet::KnuthBendix.Alphabet{T} function FreeGroup(gens, A::KnuthBendix.Alphabet) where W @assert length(gens) == length(unique(gens)) @assert all(l->l in KnuthBendix.letters(A), gens) return new{eltype(gens)}(gens, A) end end function FreeGroup(A::Alphabet) @boundscheck @assert all(KnuthBendix.hasinverse(l, A) for l in KnuthBendix.letters(A)) return FreeGroup(KnuthBendix.letters(A), A) end Base.show(io::IO, F::FreeGroup) = print(io, "free group on $(ngens(F)) generators") # mandatory methods: KnuthBendix.alphabet(F::FreeGroup) = F.alphabet relations(F::FreeGroup) = Pair{eltype(F)}[] ## FP Groups struct FPGroup{T, R, S} <: AbstractFPGroup gens::Vector{T} relations::Vector{Pair{S, S}} rws::R end KnuthBendix.alphabet(G::FPGroup) = alphabet(rewriting(G)) rewriting(G::FPGroup) = G.rws relations(G::FPGroup) = G.relations function FPGroup( G::AbstractFPGroup, rels::AbstractVector{<:Pair{GEl, GEl}}; ordering=KnuthBendix.LenLex, kwargs...) where GEl<:FPGroupElement O = ordering(alphabet(G)) for (lhs, rhs) in rels @assert parent(lhs) === parent(rhs) === G end word_rels = [word(lhs)=>word(rhs) for (lhs, rhs) in [relations(G); rels]] rws = RewritingSystem(word_rels, O) KnuthBendix.knuthbendix!(rws; kwargs...) return FPGroup(G.gens, rels, rws) end function Base.show(io::IO, G::FPGroup) print(io, "⟨") Base.print_array(io, reshape(gens(G), (1, New.ngens(G)))) print(io, " | ") Base.print_array(io, relations(G)) print(io, "⟩") end