@testset "DirectProducts" begin @testset "Constructors" begin G = PermutationGroup(3) g = G([2,3,1]) @test Groups.DirectProductGroup(G,2) isa AbstractAlgebra.Group @test G×G isa AbstractAlgebra.Group @test Groups.DirectProductGroup(G,2) isa Groups.DirectProductGroup{Generic.PermGroup{Int64}} @test (G×G)×G == DirectProductGroup(G, 3) @test (G×G)×G == (G×G)×G F = GF(13) FF = F×F @test FF×F == F×FF GG = DirectProductGroup(G,2) @test Groups.DirectProductGroupElem([G(), G()]) == (G×G)() @test GG(G(), G()) == (G×G)() @test GG([g, g^2]) isa GroupElem @test GG([g, g^2]) isa Groups.DirectProductGroupElem{Generic.perm{Int64}} h = GG([g,g^2]) @test h == GG(h) @test GG(g, g^2) isa GroupElem @test GG(g, g^2) isa Groups.DirectProductGroupElem @test_throws MethodError GG(g,g,g) @test GG(g,g^2) == h @test size(h) == (2,) @test h[1] == g @test h[2] == g^2 h[2] = G() @test h == GG(g, G()) end @testset "Basic arithmetic" begin G = PermutationGroup(3) g = G([2,3,1]) h = (G×G)([g,g^2]) @test h^2 == (G×G)(g^2,g) @test h^6 == (G×G)() @test h*h == h^2 @test h*inv(h) == (G×G)() end @testset "elem/parent_types" begin G = PermutationGroup(3) g = G([2,3,1]) @test elem_type(G×G) == DirectProductGroupElem{elem_type(G)} @test parent_type(typeof((G×G)(g,g^2))) == Groups.DirectProductGroup{typeof(G)} @test parent((G×G)(g,g^2)) == DirectProductGroup(G,2) F = GF(13) @test elem_type(F×F) == DirectProductGroupElem{Groups.AddGrpElem{elem_type(F)}} @test parent_type(typeof((F×F)(1,5))) == Groups.DirectProductGroup{AddGrp{typeof(F)}} parent((F×F)(1,5)) == DirectProductGroup(F,2) end @testset "Additive/Multiplicative groups" begin R, x = PolynomialRing(QQ, "x") F, a = NumberField(x^3 + x + 1, "a") G = PermutationGroup(3) GG = Groups.DirectProductGroup(G,2) FF = Groups.DirectProductGroup(F,2) @testset "MltGrp basic functionality" begin Gr = MltGrp(F) @test Gr(a) isa MltGrpElem g = Gr(a) @test deepcopy(g) isa MltGrpElem @test inv(g) == Gr(a^-1) @test Gr() == Gr(1) @test inv(g)*g == Gr() end @testset "AddGrp basic functionality" begin Gr = AddGrp(F) @test Gr(a) isa AddGrpElem g = Gr(a) @test deepcopy(g) isa AddGrpElem @test inv(g) == Gr(-a) @test Gr() == Gr(0) @test inv(g)*g == Gr() end end @testset "Direct Product of Multiplicative Groups" begin R, x = PolynomialRing(QQ, "x") F, a = NumberField(x^3 + x + 1, "a") FF = Groups.DirectProductGroup(MltGrp(F),2) @test FF([a,1]) isa GroupElem @test FF([a,1]) isa DirectProductGroupElem @test FF([a,1]) isa DirectProductGroupElem{MltGrpElem{elem_type(F)}} @test_throws MethodError FF(1,0) @test_throws MethodError FF([0,1]) @test_throws MethodError FF([1,0]) @test MltGrp(F) isa AbstractAlgebra.Group @test MltGrp(F) isa MultiplicativeGroup @test DirectProductGroup(MltGrp(F), 2) isa AbstractAlgebra.Group @test DirectProductGroup(MltGrp(F), 2) isa DirectProductGroup{MltGrp{typeof(F)}} F, a = NumberField(x^3 + x + 1, "a") FF = DirectProductGroup(MltGrp(F), 2) @test FF(a,a+1) == FF([a,a+1]) @test FF([1,a+1])*FF([a,a]) == FF(a,a^2+a) x, y = FF([1,a]), FF([a^2,1]) @test x*y == FF([a^2, a]) @test inv(x) == FF([1,-a^2-1]) @test parent(x) == FF end @testset "Direct Product of Additive Groups" begin R, x = PolynomialRing(QQ, "x") F, a = NumberField(x^3 + x + 1, "a") # Additive Group @test AddGrp(F) isa AbstractAlgebra.Group @test AddGrp(F) isa AdditiveGroup @test DirectProductGroup(AddGrp(F), 2) isa AbstractAlgebra.Group @test DirectProductGroup(AddGrp(F), 2) isa DirectProductGroup{AddGrp{typeof(F)}} FF = DirectProductGroup(AdditiveGroup(F), 2) @test FF([0,a]) isa AbstractAlgebra.GroupElem @test FF(F(0),a) isa DirectProductGroupElem @test FF(0,0) isa DirectProductGroupElem{AddGrpElem{elem_type(F)}} @test FF(F(1),a+1) == FF([1,a+1]) @test FF([F(1),a+1])*FF([a,a]) == FF(1+a,2a+1) x, y = FF([1,a]), FF([a^2,1]) @test x*y == FF(a^2+1, a+1) @test inv(x) == FF([F(-1),-a]) @test parent(x) == FF end @testset "Misc" begin F = GF(5) FF = DirectProductGroup(F,2) @test order(FF) == 25 elts = vec(collect(elements(FF))) @test length(elts) == 25 @test all([g*inv(g) for g in elts] .== FF()) @test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts) FF = DirectProductGroup(MultiplicativeGroup(F), 3) @test order(FF) == 64 elts = vec(collect(elements(FF))) @test length(elts) == 64 @test all([g*inv(g) for g in elts] .== FF()) @test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts) G = PermutationGroup(3) GG = Groups.DirectProductGroup(G,2) @test order(GG) == 36 @test isa([elements(GG)...], Vector{Groups.DirectProductGroupElem{elem_type(G)}}) elts = vec(collect(elements(GG))) @test length(elts) == 36 @test all([g*inv(g) for g in elts] .== GG()) @test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts) end end