1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-12-25 18:15:29 +01:00
Groups.jl/test/AutFn.jl

186 lines
5.5 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

@testset "Automorphisms" begin
@testset "Transvections" begin
@test Groups.Transvection(:ϱ, 1, 2) isa Groups.GSymbol
@test Groups.Transvection(:ϱ, 1, 2) isa Groups.Transvection
@test Groups.Transvection(, 1, 2) isa Groups.GSymbol
@test Groups.Transvection(, 1, 2) isa Groups.Transvection
t = Groups.Transvection(:ϱ, 1, 2)
@test inv(t) isa Groups.GSymbol
@test inv(t) isa Groups.Transvection
@test t != inv(t)
s = Groups.Transvection(:ϱ, 1, 2)
@test t == s
@test hash(t) == hash(s)
s_ = Groups.Transvection(:ϱ, 1, 3)
@test s_ != s
@test hash(s_) != hash(s)
@test Groups.gersten_alphabet(3) isa Alphabet
A = Groups.gersten_alphabet(3)
@test length(A) == 12
@test sprint(show, Groups.ϱ(1, 2)) == "ϱ₁.₂"
@test sprint(show, Groups.λ(3, 2)) == "λ₃.₂"
end
A4 = Alphabet(
[:a,:A,:b,:B,:c,:C,:d,:D],
[ 2, 1, 4, 3, 6, 5, 8, 7]
)
A5 = Alphabet(
[:a,:A,:b,:B,:c,:C,:d,:D,:e,:E],
[ 2, 1, 4, 3, 6, 5, 8, 7,10, 9]
)
F4 = FreeGroup([:a, :b, :c, :d], A4)
a,b,c,d = gens(F4)
D = ntuple(i->gens(F4, i), 4)
@testset "Transvection action correctness" begin
i,j = 1,2
r = Groups.Transvection(:ϱ,i,j)
l = Groups.Transvection(,i,j)
(t::Groups.Transvection)(v::Tuple) = Groups.evaluate!(v, t)
@test r(deepcopy(D)) == (a*b, b, c, d)
@test inv(r)(deepcopy(D)) == (a*b^-1,b, c, d)
@test l(deepcopy(D)) == (b*a, b, c, d)
@test inv(l)(deepcopy(D)) == (b^-1*a,b, c, d)
i,j = 3,1
r = Groups.Transvection(:ϱ,i,j)
l = Groups.Transvection(,i,j)
@test r(deepcopy(D)) == (a, b, c*a, d)
@test inv(r)(deepcopy(D)) == (a, b, c*a^-1,d)
@test l(deepcopy(D)) == (a, b, a*c, d)
@test inv(l)(deepcopy(D)) == (a, b, a^-1*c,d)
i,j = 4,3
r = Groups.Transvection(:ϱ,i,j)
l = Groups.Transvection(,i,j)
@test r(deepcopy(D)) == (a, b, c, d*c)
@test inv(r)(deepcopy(D)) == (a, b, c, d*c^-1)
@test l(deepcopy(D)) == (a, b, c, c*d)
@test inv(l)(deepcopy(D)) == (a, b, c, c^-1*d)
i,j = 2,4
r = Groups.Transvection(:ϱ,i,j)
l = Groups.Transvection(,i,j)
@test r(deepcopy(D)) == (a, b*d, c, d)
@test inv(r)(deepcopy(D)) == (a, b*d^-1,c, d)
@test l(deepcopy(D)) == (a, d*b, c, d)
@test inv(l)(deepcopy(D)) == (a, d^-1*b,c, d)
end
A = SpecialAutomorphismGroup(F4, maxrules=1000)
@testset "AutomorphismGroup constructors" begin
@test A isa Groups.AbstractFPGroup
@test A isa AutomorphismGroup
@test alphabet(A) isa Alphabet
@test Groups.relations(A) isa Vector{<:Pair}
@test sprint(show, A) == "automorphism group of free group on 4 generators"
end
@testset "Automorphisms: hash and evaluate" begin
@test Groups.domain(gens(A, 1)) == D
g, h = gens(A, 1), gens(A, 8)
@test evaluate(g*h) == evaluate(h*g)
@test (g*h).savedhash == zero(UInt)
@test sprint(show, typeof(g)) == "Automorphism{FreeGroup{Symbol},…}"
a = g*h
b = h*g
@test hash(a) != zero(UInt)
@test hash(a) == hash(b)
@test a.savedhash == b.savedhash
@test length(unique([a,b])) == 1
@test length(unique([g*h, h*g])) == 1
# Not so simple arithmetic: applying starting on the left:
# ϱ₁₂*ϱ₂₁⁻¹*λ₁₂*ε₂ == σ₂₁₃₄
g = gens(A, 1)
x1, x2, x3, x4 = Groups.domain(g)
@test evaluate(g) == (x1*x2, x2, x3, x4)
g = g*inv(gens(A, 4)) # ϱ₂₁
@test evaluate(g) == (x1*x2, x1^-1, x3, x4)
g = g*gens(A, 13)
@test evaluate(g) == (x2, x1^-1, x3, x4)
end
@testset "Automorphisms: SAut(F₄)" begin
N = 4
G = SpecialAutomorphismGroup(FreeGroup(N))
S = gens(G)
@test S isa Vector{<:FPGroupElement{<:AutomorphismGroup{<:FreeGroup}}}
@test length(S) == 2*N*(N-1)
@test length(unique(S)) == length(S)
S_sym = [S; inv.(S)]
@test length(S_sym) == length(unique(S_sym))
pushfirst!(S_sym, one(G))
B_2 = [i*j for (i,j) in Base.product(S_sym, S_sym)]
@test length(B_2) == 2401
@test length(unique(B_2)) == 1777
@test all(g->isone(inv(g)*g), B_2)
@test all(g->isone(g*inv(g)), B_2)
end
@testset "Forward evaluate" begin
N = 3
F = FreeGroup(N)
G = SpecialAutomorphismGroup(F)
a = gens(G, 1) # ϱ₁₂
f = gens(F)
@test a(f[1]) == f[1]*f[2]
@test all(a(f[i]) == f[i] for i in 2:length(f))
S = let s = gens(G)
[s; inv.(s)]
end
@test all(
map(first(Groups.wlmetric_ball(S, radius=2))) do g
lm = Groups.LettersMap(g)
img = evaluate(g)
fimg = [F(lm[first(word(s))]) for s in gens(F)]
succeeded = all(img .== fimg)
@assert succeeded "forward evaluation of $(word(g)) failed: \n img=$img\n fimg=$(tuple(fimg...))"
succeeded
end
)
end
@testset "GroupsCore conformance" begin
test_Group_interface(A)
g = A(rand(1:length(alphabet(A)), 10))
h = A(rand(1:length(alphabet(A)), 10))
test_GroupElement_interface(g, h)
end
end