mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-11-19 14:35:28 +01:00
190 lines
5.6 KiB
Julia
190 lines
5.6 KiB
Julia
@testset "Automorphisms" begin
|
||
|
||
@testset "Transvections" begin
|
||
|
||
@test New.Transvection(:ϱ, 1, 2) isa New.GSymbol
|
||
@test New.Transvection(:ϱ, 1, 2) isa New.Transvection
|
||
@test New.Transvection(:λ, 1, 2) isa New.GSymbol
|
||
@test New.Transvection(:λ, 1, 2) isa New.Transvection
|
||
t = New.Transvection(:ϱ, 1, 2)
|
||
@test inv(t) isa New.GSymbol
|
||
@test inv(t) isa New.Transvection
|
||
|
||
@test t != inv(t)
|
||
|
||
s = New.Transvection(:ϱ, 1, 2)
|
||
@test t == s
|
||
@test hash(t) == hash(s)
|
||
|
||
s_ = New.Transvection(:ϱ, 1, 3)
|
||
@test s_ != s
|
||
@test hash(s_) != hash(s)
|
||
|
||
@test New.gersten_alphabet(3) isa Alphabet
|
||
A = New.gersten_alphabet(3)
|
||
@test length(A) == 12
|
||
|
||
@test sprint(show, New.ϱ(1, 2)) == "ϱ₁.₂"
|
||
@test sprint(show, New.λ(3, 2)) == "λ₃.₂"
|
||
end
|
||
|
||
A4 = Alphabet(
|
||
[:a,:A,:b,:B,:c,:C,:d,:D],
|
||
[ 2, 1, 4, 3, 6, 5, 8, 7]
|
||
)
|
||
|
||
A5 = Alphabet(
|
||
[:a,:A,:b,:B,:c,:C,:d,:D,:e,:E],
|
||
[ 2, 1, 4, 3, 6, 5, 8, 7,10, 9]
|
||
)
|
||
|
||
F4 = New.FreeGroup([:a, :b, :c, :d], A4)
|
||
a,b,c,d = gens(F4)
|
||
D = ntuple(i->gens(F4, i), 4)
|
||
|
||
@testset "Transvection action correctness" begin
|
||
i,j = 1,2
|
||
r = New.Transvection(:ϱ,i,j)
|
||
l = New.Transvection(:λ,i,j)
|
||
|
||
(t::New.Transvection)(v::Tuple) = New.evaluate!(v, t, A4)
|
||
|
||
@test r(deepcopy(D)) == (a*b, b, c, d)
|
||
@test inv(r)(deepcopy(D)) == (a*b^-1,b, c, d)
|
||
@test l(deepcopy(D)) == (b*a, b, c, d)
|
||
@test inv(l)(deepcopy(D)) == (b^-1*a,b, c, d)
|
||
|
||
i,j = 3,1
|
||
r = New.Transvection(:ϱ,i,j)
|
||
l = New.Transvection(:λ,i,j)
|
||
@test r(deepcopy(D)) == (a, b, c*a, d)
|
||
@test inv(r)(deepcopy(D)) == (a, b, c*a^-1,d)
|
||
@test l(deepcopy(D)) == (a, b, a*c, d)
|
||
@test inv(l)(deepcopy(D)) == (a, b, a^-1*c,d)
|
||
|
||
i,j = 4,3
|
||
r = New.Transvection(:ϱ,i,j)
|
||
l = New.Transvection(:λ,i,j)
|
||
@test r(deepcopy(D)) == (a, b, c, d*c)
|
||
@test inv(r)(deepcopy(D)) == (a, b, c, d*c^-1)
|
||
@test l(deepcopy(D)) == (a, b, c, c*d)
|
||
@test inv(l)(deepcopy(D)) == (a, b, c, c^-1*d)
|
||
|
||
i,j = 2,4
|
||
r = New.Transvection(:ϱ,i,j)
|
||
l = New.Transvection(:λ,i,j)
|
||
@test r(deepcopy(D)) == (a, b*d, c, d)
|
||
@test inv(r)(deepcopy(D)) == (a, b*d^-1,c, d)
|
||
@test l(deepcopy(D)) == (a, d*b, c, d)
|
||
@test inv(l)(deepcopy(D)) == (a, d^-1*b,c, d)
|
||
end
|
||
|
||
A = New.SpecialAutomorphismGroup(F4, maxrules=1000)
|
||
|
||
@testset "AutomorphismGroup constructors" begin
|
||
@test A isa New.AbstractFPGroup
|
||
@test A isa New.AutomorphismGroup
|
||
@test KnuthBendix.alphabet(A) isa Alphabet
|
||
@test New.relations(A) isa Vector{<:Pair}
|
||
@test sprint(show, A) == "automorphism group of free group on 4 generators"
|
||
end
|
||
|
||
@testset "Automorphisms: hash and evaluate" begin
|
||
@test New.domain(gens(A, 1)) == D
|
||
g, h = gens(A, 1), gens(A, 8)
|
||
|
||
@test New.evaluate(g*h) == New.evaluate(h*g)
|
||
@test (g*h).savedhash == zero(UInt)
|
||
|
||
@test sprint(show, typeof(g)) == "Automorphism{Groups.New.FreeGroup{Symbol},…}"
|
||
|
||
a = g*h
|
||
b = h*g
|
||
@test hash(a) != zero(UInt)
|
||
@test hash(a) == hash(b)
|
||
@test a.savedhash == b.savedhash
|
||
|
||
@test length(unique([a,b])) == 1
|
||
@test length(unique([g*h, h*g])) == 1
|
||
|
||
# Not so simple arithmetic: applying starting on the left:
|
||
# ϱ₁₂*ϱ₂₁⁻¹*λ₁₂*ε₂ == σ₂₁₃₄
|
||
|
||
g = gens(A, 1)
|
||
x1, x2, x3, x4 = New.domain(g)
|
||
@test New.evaluate(g) == (x1*x2, x2, x3, x4)
|
||
|
||
g = g*inv(gens(A, 4)) # ϱ₂₁
|
||
@test New.evaluate(g) == (x1*x2, x1^-1, x3, x4)
|
||
|
||
g = g*gens(A, 13)
|
||
@test New.evaluate(g) == (x2, x1^-1, x3, x4)
|
||
end
|
||
|
||
@testset "Automorphisms: SAut(F₄)" begin
|
||
N = 4
|
||
G = New.SpecialAutomorphismGroup(New.FreeGroup(N))
|
||
|
||
S = gens(G)
|
||
@test S isa Vector{<:New.FPGroupElement{<:New.AutomorphismGroup{<:New.FreeGroup}}}
|
||
|
||
@test length(S) == 2*N*(N-1)
|
||
@test length(unique(S)) == length(S)
|
||
|
||
S_sym = [S; inv.(S)]
|
||
@test length(S_sym) == length(unique(S_sym))
|
||
|
||
pushfirst!(S_sym, one(G))
|
||
|
||
B_2 = [i*j for (i,j) in Base.product(S_sym, S_sym)]
|
||
@test length(B_2) == 2401
|
||
@test length(unique(B_2)) == 1777
|
||
|
||
@test all(g->isone(inv(g)*g), B_2)
|
||
@test all(g->isone(g*inv(g)), B_2)
|
||
end
|
||
|
||
@testset "GroupsCore conformance" begin
|
||
test_Group_interface(A)
|
||
g = A(rand(1:length(KnuthBendix.alphabet(A)), 10))
|
||
h = A(rand(1:length(KnuthBendix.alphabet(A)), 10))
|
||
|
||
test_GroupElement_interface(g, h)
|
||
end
|
||
|
||
end
|
||
|
||
# using Random
|
||
# using GroupsCore
|
||
#
|
||
# A = New.SpecialAutomorphismGroup(New.FreeGroup(4), maxrules=2000, ordering=KnuthBendix.RecursivePathOrder)
|
||
#
|
||
# # for seed in 1:1000
|
||
# let seed = 68
|
||
# N = 14
|
||
# Random.seed!(seed)
|
||
# g = A(rand(1:length(KnuthBendix.alphabet(A)), N))
|
||
# h = A(rand(1:length(KnuthBendix.alphabet(A)), N))
|
||
# @info "seed=$seed" g h
|
||
# @time isone(g*inv(g))
|
||
# @time isone(inv(g)*g)
|
||
# @info "" length(New.word(New.normalform!(g*inv(g)))) length(New.word(New.normalform!(inv(g)*g)))
|
||
# a = commutator(g, h, g)
|
||
# b = conj(inv(g), h) * conj(conj(g, h), g)
|
||
#
|
||
# @info length(New.word(a))
|
||
# @info length(New.word(b))
|
||
#
|
||
# w = a*inv(b)
|
||
# @info length(New.word(w))
|
||
# New.normalform!(w)
|
||
# @info length(New.word(w))
|
||
#
|
||
#
|
||
# #
|
||
# # @time ima = New.evaluate(a)
|
||
# # @time imb = New.evaluate(b)
|
||
# # @info "" a b ima imb
|
||
# # @time a == b
|
||
# end
|