mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-08 13:22:33 +01:00
187 lines
5.7 KiB
Julia
187 lines
5.7 KiB
Julia
@testset "Automorphisms" begin
|
||
|
||
@testset "Transvections" begin
|
||
|
||
@test Groups.Transvection(:ϱ, 1, 2) isa Groups.GSymbol
|
||
@test Groups.Transvection(:ϱ, 1, 2) isa Groups.Transvection
|
||
@test Groups.Transvection(:λ, 1, 2) isa Groups.GSymbol
|
||
@test Groups.Transvection(:λ, 1, 2) isa Groups.Transvection
|
||
t = Groups.Transvection(:ϱ, 1, 2)
|
||
@test inv(t) isa Groups.GSymbol
|
||
@test inv(t) isa Groups.Transvection
|
||
|
||
@test t != inv(t)
|
||
|
||
s = Groups.Transvection(:ϱ, 1, 2)
|
||
@test t == s
|
||
@test hash(t) == hash(s)
|
||
|
||
s_ = Groups.Transvection(:ϱ, 1, 3)
|
||
@test s_ != s
|
||
@test hash(s_) != hash(s)
|
||
|
||
@test Groups.gersten_alphabet(3) isa Alphabet
|
||
A = Groups.gersten_alphabet(3)
|
||
@test length(A) == 12
|
||
|
||
@test sprint(show, Groups.ϱ(1, 2)) == "ϱ₁.₂"
|
||
@test sprint(show, Groups.λ(3, 2)) == "λ₃.₂"
|
||
end
|
||
|
||
A4 = Alphabet(
|
||
[:a, :A, :b, :B, :c, :C, :d, :D],
|
||
[2, 1, 4, 3, 6, 5, 8, 7]
|
||
)
|
||
|
||
A5 = Alphabet(
|
||
[:a, :A, :b, :B, :c, :C, :d, :D, :e, :E],
|
||
[2, 1, 4, 3, 6, 5, 8, 7, 10, 9]
|
||
)
|
||
|
||
F4 = FreeGroup([:a, :b, :c, :d], A4)
|
||
a, b, c, d = gens(F4)
|
||
D = ntuple(i -> gens(F4, i), 4)
|
||
|
||
@testset "Transvection action correctness" begin
|
||
i, j = 1, 2
|
||
r = Groups.Transvection(:ϱ, i, j)
|
||
l = Groups.Transvection(:λ, i, j)
|
||
|
||
(t::Groups.Transvection)(v::Tuple) = Groups.evaluate!(v, t)
|
||
|
||
@test r(deepcopy(D)) == (a * b, b, c, d)
|
||
@test inv(r)(deepcopy(D)) == (a * b^-1, b, c, d)
|
||
@test l(deepcopy(D)) == (b * a, b, c, d)
|
||
@test inv(l)(deepcopy(D)) == (b^-1 * a, b, c, d)
|
||
|
||
i, j = 3, 1
|
||
r = Groups.Transvection(:ϱ, i, j)
|
||
l = Groups.Transvection(:λ, i, j)
|
||
@test r(deepcopy(D)) == (a, b, c * a, d)
|
||
@test inv(r)(deepcopy(D)) == (a, b, c * a^-1, d)
|
||
@test l(deepcopy(D)) == (a, b, a * c, d)
|
||
@test inv(l)(deepcopy(D)) == (a, b, a^-1 * c, d)
|
||
|
||
i, j = 4, 3
|
||
r = Groups.Transvection(:ϱ, i, j)
|
||
l = Groups.Transvection(:λ, i, j)
|
||
@test r(deepcopy(D)) == (a, b, c, d * c)
|
||
@test inv(r)(deepcopy(D)) == (a, b, c, d * c^-1)
|
||
@test l(deepcopy(D)) == (a, b, c, c * d)
|
||
@test inv(l)(deepcopy(D)) == (a, b, c, c^-1 * d)
|
||
|
||
i, j = 2, 4
|
||
r = Groups.Transvection(:ϱ, i, j)
|
||
l = Groups.Transvection(:λ, i, j)
|
||
@test r(deepcopy(D)) == (a, b * d, c, d)
|
||
@test inv(r)(deepcopy(D)) == (a, b * d^-1, c, d)
|
||
@test l(deepcopy(D)) == (a, d * b, c, d)
|
||
@test inv(l)(deepcopy(D)) == (a, d^-1 * b, c, d)
|
||
end
|
||
|
||
A = SpecialAutomorphismGroup(F4, max_rules=1000)
|
||
|
||
@testset "AutomorphismGroup constructors" begin
|
||
@test A isa Groups.AbstractFPGroup
|
||
@test A isa AutomorphismGroup
|
||
@test alphabet(A) isa Alphabet
|
||
@test Groups.relations(A) isa Vector{<:Pair}
|
||
@test sprint(show, A) == "automorphism group of free group on 4 generators"
|
||
end
|
||
|
||
@testset "Automorphisms: hash and evaluate" begin
|
||
@test Groups.domain(gens(A, 1)) == D
|
||
g, h = gens(A, 1), gens(A, 8) # (ϱ₁.₂, ϱ₃.₂)
|
||
|
||
@test evaluate(g * h) == evaluate(h * g)
|
||
@test (g * h).savedhash == zero(UInt)
|
||
|
||
@test contains(sprint(show, typeof(g)), "Automorphism{FreeGroup{Symbol")
|
||
|
||
a = g * h
|
||
b = h * g
|
||
@test hash(a) != zero(UInt)
|
||
@test hash(a) == hash(b)
|
||
@test a.savedhash == b.savedhash
|
||
|
||
@test length(unique([a, b])) == 1
|
||
@test length(unique([g * h, h * g])) == 1
|
||
|
||
# Not so simple arithmetic: applying starting on the left:
|
||
# ϱ₁₂*ϱ₂₁⁻¹*λ₁₂*ε₂ == σ₂₁₃₄
|
||
|
||
g = gens(A, 1)
|
||
x1, x2, x3, x4 = Groups.domain(g)
|
||
@test evaluate(g) == (x1 * x2, x2, x3, x4)
|
||
|
||
g = g * inv(gens(A, 4)) # ϱ₂₁
|
||
@test evaluate(g) == (x1 * x2, x1^-1, x3, x4)
|
||
|
||
g = g * gens(A, 13)
|
||
@test evaluate(g) == (x2, x1^-1, x3, x4)
|
||
end
|
||
|
||
@testset "Automorphisms: SAut(F₄)" begin
|
||
N = 4
|
||
G = SpecialAutomorphismGroup(FreeGroup(N))
|
||
|
||
S = gens(G)
|
||
@test S isa Vector{<:FPGroupElement{<:AutomorphismGroup{<:FreeGroup}}}
|
||
|
||
@test length(S) == 2 * N * (N - 1)
|
||
@test length(unique(S)) == length(S)
|
||
|
||
S_sym = [S; inv.(S)]
|
||
@test length(S_sym) == length(unique(S_sym))
|
||
|
||
pushfirst!(S_sym, one(G))
|
||
|
||
B_2 = [i * j for (i, j) in Base.product(S_sym, S_sym)]
|
||
@test length(B_2) == 2401
|
||
@test length(unique(B_2)) == 1777
|
||
|
||
@test all(g -> isone(inv(g) * g), B_2)
|
||
@test all(g -> isone(g * inv(g)), B_2)
|
||
end
|
||
|
||
@testset "Forward evaluate" begin
|
||
N = 3
|
||
F = FreeGroup(N)
|
||
G = SpecialAutomorphismGroup(F)
|
||
|
||
a = gens(G, 1) # ϱ₁₂
|
||
|
||
f = gens(F)
|
||
|
||
@test a(f[1]) == f[1] * f[2]
|
||
@test all(a(f[i]) == f[i] for i in 2:length(f))
|
||
|
||
S = let s = gens(G)
|
||
[s; inv.(s)]
|
||
end
|
||
|
||
@test all(
|
||
map(first(Groups.wlmetric_ball(S, radius=2))) do g
|
||
lm = Groups.LettersMap(g)
|
||
img = evaluate(g)
|
||
|
||
fimg = [F(lm[first(word(s))]) for s in gens(F)]
|
||
|
||
succeeded = all(img .== fimg)
|
||
@assert succeeded "forward evaluation of $(word(g)) failed: \n img=$img\n fimg=$(tuple(fimg...))"
|
||
succeeded
|
||
end
|
||
)
|
||
end
|
||
|
||
Logging.with_logger(Logging.NullLogger()) do
|
||
@testset "GroupsCore conformance" begin
|
||
test_Group_interface(A)
|
||
g = A(rand(1:length(alphabet(A)), 10))
|
||
h = A(rand(1:length(alphabet(A)), 10))
|
||
|
||
test_GroupElement_interface(g, h)
|
||
end
|
||
end
|
||
end
|