mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-11-19 14:35:28 +01:00
210 lines
6.1 KiB
Julia
210 lines
6.1 KiB
Julia
@testset "DirectPowers" begin
|
||
|
||
×(a,b) = Groups.DirectPower(a,b)
|
||
|
||
@testset "Constructors" begin
|
||
G = PermutationGroup(3)
|
||
|
||
@test Groups.DirectPowerGroup(G,2) isa AbstractAlgebra.Group
|
||
@test G×G isa AbstractAlgebra.Group
|
||
@test Groups.DirectPowerGroup(G,2) isa Groups.DirectPowerGroup{2, Generic.PermGroup{Int64}}
|
||
|
||
@test (G×G)×G == DirectPowerGroup(G, 3)
|
||
@test (G×G)×G == (G×G)×G
|
||
|
||
GG = DirectPowerGroup(G,2)
|
||
@test (G×G)() isa GroupElem
|
||
@test (G×G)((G(), G())) isa GroupElem
|
||
@test (G×G)([G(), G()]) isa GroupElem
|
||
|
||
@test Groups.DirectPowerGroupElem((G(), G())) == (G×G)()
|
||
@test GG(G(), G()) == (G×G)()
|
||
|
||
g = perm"(1,2,3)"
|
||
|
||
@test GG(g, g^2) isa GroupElem
|
||
@test GG(g, g^2) isa Groups.DirectPowerGroupElem{2, Generic.perm{Int64}}
|
||
|
||
h = GG(g,g^2)
|
||
|
||
@test h == GG(h)
|
||
|
||
@test GG(g, g^2) isa GroupElem
|
||
@test GG(g, g^2) isa Groups.DirectPowerGroupElem
|
||
|
||
@test_throws MethodError GG(g,g,g)
|
||
@test GG(g,g^2) == h
|
||
|
||
@test h[1] == g
|
||
@test h[2] == g^2
|
||
h = GG(g, G())
|
||
@test h == GG(g, G())
|
||
end
|
||
|
||
@testset "Basic arithmetic" begin
|
||
G = PermutationGroup(3)
|
||
GG = G×G
|
||
i = perm"(1,3)"
|
||
g = perm"(1,2,3)"
|
||
|
||
h = GG(g,g^2)
|
||
k = GG(g^3, g^2)
|
||
|
||
@test h^2 == GG(g^2,g)
|
||
@test h^6 == GG()
|
||
|
||
@test h*h == h^2
|
||
@test h*k == GG(g,g)
|
||
|
||
@test h*inv(h) == (G×G)()
|
||
|
||
w = GG(g,i)*GG(i,g)
|
||
@test w == GG(perm"(1,2)(3)", perm"(2,3)")
|
||
@test w == inv(w)
|
||
@test w^2 == w*w == GG()
|
||
end
|
||
|
||
@testset "elem/parent_types" begin
|
||
G = PermutationGroup(3)
|
||
g = perm"(1,2,3)"
|
||
|
||
@test elem_type(G×G) == DirectPowerGroupElem{2, elem_type(G)}
|
||
@test elem_type(G×G×G) == DirectPowerGroupElem{3, elem_type(G)}
|
||
@test parent_type(typeof((G×G)(g,g^2))) == Groups.DirectPowerGroup{2, typeof(G)}
|
||
@test parent(DirectPowerGroupElem((g,g^2,g^3))) == DirectPowerGroup(G,3)
|
||
|
||
F = AdditiveGroup(GF(13))
|
||
|
||
@test elem_type(F×F) ==
|
||
DirectPowerGroupElem{2, Groups.AddGrpElem{AbstractAlgebra.gfelem{Int}}}
|
||
@test parent_type(typeof((F×F)(1,5))) ==
|
||
Groups.DirectPowerGroup{2, Groups.AddGrp{AbstractAlgebra.GFField{Int}}}
|
||
parent((F×F)(1,5)) == DirectPowerGroup(F,2)
|
||
|
||
F = MultiplicativeGroup(GF(13))
|
||
|
||
@test elem_type(F×F) ==
|
||
DirectPowerGroupElem{2, Groups.MltGrpElem{AbstractAlgebra.gfelem{Int}}}
|
||
@test parent_type(typeof((F×F)(1,5))) ==
|
||
Groups.DirectPowerGroup{2, Groups.MltGrp{AbstractAlgebra.GFField{Int}}}
|
||
parent((F×F)(1,5)) == DirectPowerGroup(F,2)
|
||
end
|
||
|
||
@testset "Additive/Multiplicative groups" begin
|
||
|
||
R, x = PolynomialRing(QQ, "x")
|
||
F, a = NumberField(x^3 + x + 1, "a")
|
||
G = PermutationGroup(3)
|
||
|
||
@testset "MltGrp basic functionality" begin
|
||
Gr = MltGrp(F)
|
||
@test Gr(a) isa MltGrpElem
|
||
g = Gr(a)
|
||
@test deepcopy(g) isa MltGrpElem
|
||
@test inv(g) == Gr(a^-1)
|
||
@test Gr() == Gr(1)
|
||
@test inv(g)*g == Gr()
|
||
end
|
||
|
||
@testset "AddGrp basic functionality" begin
|
||
Gr = AddGrp(F)
|
||
@test Gr(a) isa AddGrpElem
|
||
g = Gr(a)
|
||
@test deepcopy(g) isa AddGrpElem
|
||
@test inv(g) == Gr(-a)
|
||
@test Gr() == Gr(0)
|
||
@test inv(g)*g == Gr()
|
||
end
|
||
end
|
||
|
||
@testset "Direct Product of Multiplicative Groups" begin
|
||
|
||
R, x = PolynomialRing(QQ, "x")
|
||
F, a = NumberField(x^3 + x + 1, "a")
|
||
FF = Groups.DirectPowerGroup(MltGrp(F),2)
|
||
|
||
@test FF([a,1]) isa GroupElem
|
||
@test FF([a,1]) isa DirectPowerGroupElem
|
||
@test FF([a,1]) isa DirectPowerGroupElem{2, MltGrpElem{elem_type(F)}}
|
||
@test_throws DomainError FF(1,0)
|
||
@test_throws DomainError FF([0,1])
|
||
@test_throws DomainError FF([1,0])
|
||
|
||
@test MltGrp(F) isa AbstractAlgebra.Group
|
||
@test MltGrp(F) isa MultiplicativeGroup
|
||
@test DirectPowerGroup(MltGrp(F), 2) isa AbstractAlgebra.Group
|
||
@test DirectPowerGroup(MltGrp(F), 2) isa DirectPowerGroup{2, MltGrp{typeof(F)}}
|
||
|
||
F, a = NumberField(x^3 + x + 1, "a")
|
||
FF = DirectPowerGroup(MltGrp(F), 2)
|
||
|
||
@test FF(a,a+1) == FF([a,a+1])
|
||
@test FF([1,a+1])*FF([a,a]) == FF(a,a^2+a)
|
||
x, y = FF([1,a]), FF([a^2,1])
|
||
@test x*y == FF([a^2, a])
|
||
@test inv(x) == FF([1,-a^2-1])
|
||
|
||
@test parent(x) == FF
|
||
end
|
||
|
||
@testset "Direct Product of Additive Groups" begin
|
||
|
||
R, x = PolynomialRing(QQ, "x")
|
||
F, a = NumberField(x^3 + x + 1, "a")
|
||
|
||
# Additive Group
|
||
@test AddGrp(F) isa AbstractAlgebra.Group
|
||
@test AddGrp(F) isa AdditiveGroup
|
||
@test DirectPowerGroup(AddGrp(F), 2) isa AbstractAlgebra.Group
|
||
@test DirectPowerGroup(AddGrp(F), 2) isa DirectPowerGroup{2, AddGrp{typeof(F)}}
|
||
|
||
FF = DirectPowerGroup(AdditiveGroup(F), 2)
|
||
|
||
@test FF([0,a]) isa AbstractAlgebra.GroupElem
|
||
@test FF(F(0),a) isa DirectPowerGroupElem
|
||
@test FF(0,0) isa DirectPowerGroupElem{2, AddGrpElem{elem_type(F)}}
|
||
|
||
@test FF(F(1),a+1) == FF([1,a+1])
|
||
|
||
@test FF([F(1),a+1])*FF([a,a]) == FF(1+a,2a+1)
|
||
|
||
x, y = FF([1,a]), FF([a^2,1])
|
||
@test x*y == FF(a^2+1, a+1)
|
||
@test inv(x) == FF([F(-1),-a])
|
||
|
||
@test parent(x) == FF
|
||
end
|
||
|
||
@testset "Misc" begin
|
||
F = GF(5)
|
||
|
||
FF = DirectPowerGroup(AdditiveGroup(F),2)
|
||
@test order(FF) == 25
|
||
|
||
elts = vec(collect(FF))
|
||
@test length(elts) == 25
|
||
@test all([g*inv(g) == FF() for g in elts])
|
||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||
|
||
FF = DirectPowerGroup(MultiplicativeGroup(F), 3)
|
||
@test order(FF) == 64
|
||
|
||
elts = vec(collect(FF))
|
||
@test length(elts) == 64
|
||
@test all([g*inv(g) == FF() for g in elts])
|
||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||
|
||
|
||
G = PermutationGroup(3)
|
||
GG = Groups.DirectPowerGroup(G,3)
|
||
@test order(GG) == 216
|
||
|
||
@test isa(collect(GG), Vector{Groups.DirectPowerGroupElem{3, elem_type(G)}})
|
||
elts = vec(collect(GG))
|
||
|
||
@test length(elts) == 216
|
||
@test all([g*inv(g) == GG() for g in elts])
|
||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||
end
|
||
end
|