1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 14:35:28 +01:00
Groups.jl/test/DirectPower-tests.jl
2019-01-02 15:55:37 +01:00

210 lines
6.1 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

@testset "DirectPowers" begin
×(a,b) = Groups.DirectPower(a,b)
@testset "Constructors" begin
G = PermutationGroup(3)
@test Groups.DirectPowerGroup(G,2) isa AbstractAlgebra.Group
@test G×G isa AbstractAlgebra.Group
@test Groups.DirectPowerGroup(G,2) isa Groups.DirectPowerGroup{2, Generic.PermGroup{Int64}}
@test (G×G)×G == DirectPowerGroup(G, 3)
@test (G×G)×G == (G×G)×G
GG = DirectPowerGroup(G,2)
@test (G×G)() isa GroupElem
@test (G×G)((G(), G())) isa GroupElem
@test (G×G)([G(), G()]) isa GroupElem
@test Groups.DirectPowerGroupElem((G(), G())) == (G×G)()
@test GG(G(), G()) == (G×G)()
g = perm"(1,2,3)"
@test GG(g, g^2) isa GroupElem
@test GG(g, g^2) isa Groups.DirectPowerGroupElem{2, Generic.perm{Int64}}
h = GG(g,g^2)
@test h == GG(h)
@test GG(g, g^2) isa GroupElem
@test GG(g, g^2) isa Groups.DirectPowerGroupElem
@test_throws MethodError GG(g,g,g)
@test GG(g,g^2) == h
@test h[1] == g
@test h[2] == g^2
h = GG(g, G())
@test h == GG(g, G())
end
@testset "Basic arithmetic" begin
G = PermutationGroup(3)
GG = G×G
i = perm"(1,3)"
g = perm"(1,2,3)"
h = GG(g,g^2)
k = GG(g^3, g^2)
@test h^2 == GG(g^2,g)
@test h^6 == GG()
@test h*h == h^2
@test h*k == GG(g,g)
@test h*inv(h) == (G×G)()
w = GG(g,i)*GG(i,g)
@test w == GG(perm"(1,2)(3)", perm"(2,3)")
@test w == inv(w)
@test w^2 == w*w == GG()
end
@testset "elem/parent_types" begin
G = PermutationGroup(3)
g = perm"(1,2,3)"
@test elem_type(G×G) == DirectPowerGroupElem{2, elem_type(G)}
@test elem_type(G×G×G) == DirectPowerGroupElem{3, elem_type(G)}
@test parent_type(typeof((G×G)(g,g^2))) == Groups.DirectPowerGroup{2, typeof(G)}
@test parent(DirectPowerGroupElem((g,g^2,g^3))) == DirectPowerGroup(G,3)
F = AdditiveGroup(GF(13))
@test elem_type(F×F) ==
DirectPowerGroupElem{2, Groups.AddGrpElem{AbstractAlgebra.gfelem{Int}}}
@test parent_type(typeof((F×F)(1,5))) ==
Groups.DirectPowerGroup{2, Groups.AddGrp{AbstractAlgebra.GFField{Int}}}
parent((F×F)(1,5)) == DirectPowerGroup(F,2)
F = MultiplicativeGroup(GF(13))
@test elem_type(F×F) ==
DirectPowerGroupElem{2, Groups.MltGrpElem{AbstractAlgebra.gfelem{Int}}}
@test parent_type(typeof((F×F)(1,5))) ==
Groups.DirectPowerGroup{2, Groups.MltGrp{AbstractAlgebra.GFField{Int}}}
parent((F×F)(1,5)) == DirectPowerGroup(F,2)
end
@testset "Additive/Multiplicative groups" begin
R, x = PolynomialRing(QQ, "x")
F, a = NumberField(x^3 + x + 1, "a")
G = PermutationGroup(3)
@testset "MltGrp basic functionality" begin
Gr = MltGrp(F)
@test Gr(a) isa MltGrpElem
g = Gr(a)
@test deepcopy(g) isa MltGrpElem
@test inv(g) == Gr(a^-1)
@test Gr() == Gr(1)
@test inv(g)*g == Gr()
end
@testset "AddGrp basic functionality" begin
Gr = AddGrp(F)
@test Gr(a) isa AddGrpElem
g = Gr(a)
@test deepcopy(g) isa AddGrpElem
@test inv(g) == Gr(-a)
@test Gr() == Gr(0)
@test inv(g)*g == Gr()
end
end
@testset "Direct Product of Multiplicative Groups" begin
R, x = PolynomialRing(QQ, "x")
F, a = NumberField(x^3 + x + 1, "a")
FF = Groups.DirectPowerGroup(MltGrp(F),2)
@test FF([a,1]) isa GroupElem
@test FF([a,1]) isa DirectPowerGroupElem
@test FF([a,1]) isa DirectPowerGroupElem{2, MltGrpElem{elem_type(F)}}
@test_throws DomainError FF(1,0)
@test_throws DomainError FF([0,1])
@test_throws DomainError FF([1,0])
@test MltGrp(F) isa AbstractAlgebra.Group
@test MltGrp(F) isa MultiplicativeGroup
@test DirectPowerGroup(MltGrp(F), 2) isa AbstractAlgebra.Group
@test DirectPowerGroup(MltGrp(F), 2) isa DirectPowerGroup{2, MltGrp{typeof(F)}}
F, a = NumberField(x^3 + x + 1, "a")
FF = DirectPowerGroup(MltGrp(F), 2)
@test FF(a,a+1) == FF([a,a+1])
@test FF([1,a+1])*FF([a,a]) == FF(a,a^2+a)
x, y = FF([1,a]), FF([a^2,1])
@test x*y == FF([a^2, a])
@test inv(x) == FF([1,-a^2-1])
@test parent(x) == FF
end
@testset "Direct Product of Additive Groups" begin
R, x = PolynomialRing(QQ, "x")
F, a = NumberField(x^3 + x + 1, "a")
# Additive Group
@test AddGrp(F) isa AbstractAlgebra.Group
@test AddGrp(F) isa AdditiveGroup
@test DirectPowerGroup(AddGrp(F), 2) isa AbstractAlgebra.Group
@test DirectPowerGroup(AddGrp(F), 2) isa DirectPowerGroup{2, AddGrp{typeof(F)}}
FF = DirectPowerGroup(AdditiveGroup(F), 2)
@test FF([0,a]) isa AbstractAlgebra.GroupElem
@test FF(F(0),a) isa DirectPowerGroupElem
@test FF(0,0) isa DirectPowerGroupElem{2, AddGrpElem{elem_type(F)}}
@test FF(F(1),a+1) == FF([1,a+1])
@test FF([F(1),a+1])*FF([a,a]) == FF(1+a,2a+1)
x, y = FF([1,a]), FF([a^2,1])
@test x*y == FF(a^2+1, a+1)
@test inv(x) == FF([F(-1),-a])
@test parent(x) == FF
end
@testset "Misc" begin
F = GF(5)
FF = DirectPowerGroup(AdditiveGroup(F),2)
@test order(FF) == 25
elts = vec(collect(FF))
@test length(elts) == 25
@test all([g*inv(g) == FF() for g in elts])
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
FF = DirectPowerGroup(MultiplicativeGroup(F), 3)
@test order(FF) == 64
elts = vec(collect(FF))
@test length(elts) == 64
@test all([g*inv(g) == FF() for g in elts])
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
G = PermutationGroup(3)
GG = Groups.DirectPowerGroup(G,3)
@test order(GG) == 216
@test isa(collect(GG), Vector{Groups.DirectPowerGroupElem{3, elem_type(G)}})
elts = vec(collect(GG))
@test length(elts) == 216
@test all([g*inv(g) == GG() for g in elts])
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
end
end