1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-07 13:10:28 +01:00
Groups.jl/test/fp_groups.jl

95 lines
2.5 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

@testset "FPGroups" begin
A = Alphabet([:a, :A, :b, :B, :c, :C], [2, 1, 4, 3, 6, 5])
@test FreeGroup(A) isa FreeGroup
@test sprint(show, FreeGroup(A)) == "free group on 3 generators"
F = FreeGroup([:a, :b, :c], Groups.KnuthBendix.LenLex(A))
@test sprint(show, F) == "free group on 3 generators"
a, b, c = gens(F)
@test c * b * a isa FPGroupElement
# quotient of F:
G = FPGroup(F, [a * b => b * a, a * c => c * a, b * c => c * b])
@test G isa FPGroup
@test sprint(show, G) ==
"⟨ a b c | \n\t a*b => b*a a*c => c*a b*c => c*b ⟩"
@test rand(G) isa FPGroupElement
f = a * c * b
@test word(f) isa Word{UInt8}
aG, bG, cG = gens(G)
@test aG isa FPGroupElement
@test_throws AssertionError aG == a
@test word(aG) == word(a)
g = aG * cG * bG
@test_throws AssertionError f == g
@test word(f) == word(g)
@test word(g) == [1, 5, 3]
Groups.normalform!(g)
@test word(g) == [1, 3, 5]
let g = aG * cG * bG
# test that we normalize g before printing
@test sprint(show, g) == "a*b*c"
end
# quotient of G
H = FPGroup(G, [aG^2 => cG, bG * cG => aG]; max_rules = 200)
h = H(word(g))
@test h isa FPGroupElement
@test_throws AssertionError h == g
@test_throws MethodError h * g
H = FPGroup(G, [aG^2 => cG, bG * cG => aG]; max_rules = 200)
@test_throws AssertionError one(H) == one(H)
Groups.normalform!(h)
@test h == H([5])
@test_logs (
:warn,
"using generic isfiniteorder(::AbstractFPGroupElement): the returned `false` might be wrong",
) isfiniteorder(h)
@test_logs (
:warn,
"using generic isfinite(::AbstractFPGroup): the returned `false` might be wrong",
) isfinite(H)
Logging.with_logger(Logging.NullLogger()) do
@testset "GroupsCore conformance: H" begin
test_Group_interface(H)
test_GroupElement_interface(rand(H, 2)...)
end
end
@testset "hash/normalform #28" begin
function cyclic_group(n::Integer)
A = Alphabet([:a, :A], [2, 1])
F = FreeGroup(A)
a, = Groups.gens(F)
e = one(F)
Cₙ = FPGroup(F, [a^n => e])
return Cₙ
end
n = 15
G = cyclic_group(n)
ball, sizes = Groups.wlmetric_ball(gens(G); radius = n)
@test first(sizes) == 2
@test last(sizes) == n
@test Set(ball) == Set([first(gens(G))^i for i in 0:n-1])
end
end