1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-22 16:25:27 +01:00
Groups.jl/test/AutSigma3.jl
2022-10-14 01:14:38 +02:00

76 lines
2.1 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

@testset "Aut(Σ₃.₀)" begin
genus = 3
π₁Σ = Groups.SurfaceGroup(genus, 0)
@test contains(sprint(print, π₁Σ), "surface")
Groups.PermRightAut(p::Perm) = Groups.PermRightAut(p.d)
# Groups.PermLeftAut(p::Perm) = Groups.PermLeftAut(p.d)
autπ₁Σ = let autπ₁Σ = AutomorphismGroup(π₁Σ)
pauts = let p = perm"(1,3,5)(2,4,6)"
[Groups.PermRightAut(p^i) for i in 0:2]
end
T = eltype(alphabet(autπ₁Σ))
S = eltype(pauts)
A = Alphabet(Union{T,S}[alphabet(autπ₁Σ)...; pauts])
autG = AutomorphismGroup(
π₁Σ,
autπ₁Σ.gens,
A,
ntuple(i -> inv(gens(π₁Σ, i)), 2Groups.genus(π₁Σ))
)
autG
end
Al = alphabet(autπ₁Σ)
S = [gens(autπ₁Σ); inv.(gens(autπ₁Σ))]
sautFn = parent(Al[1].autFn_word)
τ = Groups.rotation_element(sautFn)
@testset "Twists" begin
A = KnuthBendix.alphabet(sautFn)
λ = Groups.ΡΛ(, A, 2genus)
ϱ = Groups.ΡΛ(:ϱ, A, 2genus)
@test sautFn(Groups.Te_diagonal(λ, ϱ, 1)) ==
conj(sautFn(Groups.Te_diagonal(λ, ϱ, 2)), τ)
@test sautFn(Groups.Te_diagonal(λ, ϱ, 3)) == sautFn(Groups.Te(λ, ϱ, 3, 1))
end
z = let d = Groups.domain(τ)
Groups.evaluate(τ^genus)
end
@test π₁Σ.(word.(z)) == Groups.domain(first(S))
d = Groups.domain(first(S))
p = perm"(1,3,5)(2,4,6)"
@test Groups.evaluate!(deepcopy(d), τ) == d^inv(p)
@test Groups.evaluate!(deepcopy(d), τ^2) == d^p
E, sizes = Groups.wlmetric_ball(S, radius=3)
@test sizes == [49, 1813, 62971]
B2 = @view E[1:sizes[2]]
σ = autπ₁Σ(Word([Al[Groups.PermRightAut(p)]]))
@test conj(S[7], σ) == S[10]
@test conj(S[7], σ^2) == S[11]
@test conj(S[9], σ) == S[12]
@test conj(S[9], σ^2) == S[8]
@test conj(S[1], σ) == S[4]
@test conj(S[1], σ^2) == S[5]
@test conj(S[3], σ) == S[6]
@test conj(S[3], σ^2) == S[2]
B2ᶜ = [conj(b, σ) for b in B2]
@test B2ᶜ != B2
@test Set(B2ᶜ) == Set(B2)
end