mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-11-19 06:30:29 +01:00
219 lines
6.4 KiB
Julia
219 lines
6.4 KiB
Julia
using GroupsCore
|
|
# using Groups
|
|
# import Groups.AbstractFPGroup
|
|
import KnuthBendix
|
|
import KnuthBendix: AbstractWord, Alphabet, Word, RewritingSystem
|
|
import KnuthBendix: alphabet
|
|
using Random
|
|
|
|
## "Abstract" definitions
|
|
|
|
"""
|
|
AbstractFPGroup
|
|
|
|
An Abstract type representing finitely presented groups. Every instance `` must implement
|
|
* `KnuthBendix.alphabet(G::MyFPGroup)`
|
|
* `rewriting(G::MyFPGroup)` : return the rewriting object which must implement
|
|
> `KnuthBendix.rewrite_from_left!(u, v, rewriting(G))`.
|
|
By default `alphabet(G)` is returned, which amounts to free rewriting in `G`.
|
|
* `relations(G::MyFPGroup)` : return a set of defining relations.
|
|
|
|
AbstractFPGroup may also override `word_type(::Type{MyFPGroup}) = Word{UInt16}`,
|
|
which controls the word type used for group elements. If a group has more than `255` generators you need to define e.g.
|
|
> `word_type(::Type{MyFPGroup}) = Word{UInt16}`
|
|
"""
|
|
abstract type AbstractFPGroup <: GroupsCore.Group end
|
|
|
|
word_type(G::AbstractFPGroup) = word_type(typeof(G))
|
|
# the default:
|
|
word_type(::Type{<:AbstractFPGroup}) = Word{UInt8}
|
|
|
|
# the default (results in free rewriting)
|
|
rewriting(G::AbstractFPGroup) = alphabet(G)
|
|
|
|
Base.@propagate_inbounds function (G::AbstractFPGroup)(word::AbstractVector{<:Integer})
|
|
@boundscheck @assert all(l -> 1 <= l <= length(KnuthBendix.alphabet(G)), word)
|
|
return FPGroupElement(word_type(G)(word), G)
|
|
end
|
|
|
|
## Group Interface
|
|
|
|
Base.one(G::AbstractFPGroup) = FPGroupElement(one(word_type(G)), G)
|
|
|
|
Base.eltype(::Type{FPG}) where {FPG<:AbstractFPGroup} = FPGroupElement{FPG,word_type(FPG)}
|
|
|
|
include("iteration.jl")
|
|
|
|
GroupsCore.ngens(G::AbstractFPGroup) = length(G.gens)
|
|
|
|
function GroupsCore.gens(G::AbstractFPGroup, i::Integer)
|
|
@boundscheck 1 <= i <= GroupsCore.ngens(G)
|
|
l = alphabet(G)[G.gens[i]]
|
|
return FPGroupElement(word_type(G)([l]), G)
|
|
end
|
|
GroupsCore.gens(G::AbstractFPGroup) = [gens(G, i) for i in 1:GroupsCore.ngens(G)]
|
|
|
|
# TODO: ProductReplacementAlgorithm
|
|
function Base.rand(rng::Random.AbstractRNG, rs::Random.SamplerTrivial{<:AbstractFPGroup})
|
|
l = rand(10:100)
|
|
G = rs[]
|
|
nletters = length(alphabet(G))
|
|
return FPGroupElement(word_type(G)(rand(1:nletters, l)), G)
|
|
end
|
|
|
|
Base.isfinite(::AbstractFPGroup) = (@warn "using generic isfinite(::AbstractFPGroup): the returned `false` might be wrong"; false)
|
|
|
|
## FPGroupElement
|
|
|
|
mutable struct FPGroupElement{G<:AbstractFPGroup,W<:AbstractWord} <: GroupElement
|
|
word::W
|
|
savedhash::UInt
|
|
parent::G
|
|
|
|
FPGroupElement(word::W, G::AbstractFPGroup) where {W<:AbstractWord} =
|
|
new{typeof(G),W}(word, UInt(0), G)
|
|
|
|
FPGroupElement(word::W, hash::UInt, G::AbstractFPGroup) where {W<:AbstractWord} =
|
|
new{typeof(G),W}(word, hash, G)
|
|
end
|
|
|
|
word(f::FPGroupElement) = f.word
|
|
|
|
#convenience
|
|
KnuthBendix.alphabet(g::FPGroupElement) = alphabet(parent(g))
|
|
|
|
function Base.show(io::IO, f::FPGroupElement)
|
|
f = normalform!(f)
|
|
KnuthBendix.print_repr(io, word(f), alphabet(f))
|
|
end
|
|
|
|
## GroupElement Interface for FPGroupElement
|
|
|
|
Base.parent(f::FPGroupElement) = f.parent
|
|
GroupsCore.parent_type(::Type{<:FPGroupElement{G}}) where {G} = G
|
|
|
|
function Base.:(==)(g::FPGroupElement, h::FPGroupElement)
|
|
@boundscheck @assert parent(g) === parent(h)
|
|
normalform!(g)
|
|
normalform!(h)
|
|
hash(g) != hash(h) && return false
|
|
return word(g) == word(h)
|
|
end
|
|
|
|
function Base.deepcopy_internal(g::FPGroupElement, stackdict::IdDict)
|
|
return FPGroupElement(copy(word(g)), g.savedhash, parent(g))
|
|
end
|
|
|
|
Base.inv(g::FPGroupElement) = (G = parent(g); FPGroupElement(inv(alphabet(G), word(g)), G))
|
|
|
|
function Base.:(*)(g::FPGroupElement, h::FPGroupElement)
|
|
@boundscheck @assert parent(g) === parent(h)
|
|
return FPGroupElement(word(g) * word(h), parent(g))
|
|
end
|
|
|
|
GroupsCore.isfiniteorder(g::FPGroupElement) = isone(g) ? true : (@warn "using generic isfiniteorder(::FPGroupElement): the returned `false` might be wrong"; false)
|
|
|
|
# additional methods:
|
|
Base.isone(g::FPGroupElement) = (normalform!(g); isempty(word(g)))
|
|
|
|
## Free Groups
|
|
|
|
struct FreeGroup{T} <: AbstractFPGroup
|
|
gens::Vector{T}
|
|
alphabet::KnuthBendix.Alphabet{T}
|
|
|
|
function FreeGroup(gens, A::KnuthBendix.Alphabet) where {W}
|
|
@assert length(gens) == length(unique(gens))
|
|
@assert all(l -> l in KnuthBendix.letters(A), gens)
|
|
return new{eltype(gens)}(gens, A)
|
|
end
|
|
end
|
|
|
|
function FreeGroup(A::Alphabet)
|
|
@boundscheck @assert all(KnuthBendix.hasinverse(l, A) for l in KnuthBendix.letters(A))
|
|
ltrs = KnuthBendix.letters(A)
|
|
gens = Vector{eltype(ltrs)}()
|
|
invs = Vector{eltype(ltrs)}()
|
|
for l in ltrs
|
|
l ∈ invs && continue
|
|
push!(gens, l)
|
|
push!(invs, inv(A, l))
|
|
end
|
|
|
|
return FreeGroup(gens, A)
|
|
end
|
|
|
|
function FreeGroup(n::Integer)
|
|
symbols = Symbol[]
|
|
inverses = Int[]
|
|
sizehint!(symbols, 2n)
|
|
sizehint!(inverses, 2n)
|
|
for i in 1:n
|
|
push!(symbols, Symbol(:f, i), Symbol(:F, i))
|
|
push!(inverses, 2i, 2i-1)
|
|
end
|
|
return FreeGroup(symbols[1:2:2n], Alphabet(symbols, inverses))
|
|
end
|
|
|
|
Base.show(io::IO, F::FreeGroup) = print(io, "free group on $(ngens(F)) generators")
|
|
|
|
# mandatory methods:
|
|
KnuthBendix.alphabet(F::FreeGroup) = F.alphabet
|
|
relations(F::FreeGroup) = Pair{eltype(F)}[]
|
|
|
|
# GroupsCore interface:
|
|
# these are mathematically correct
|
|
Base.isfinite(::FreeGroup) = false
|
|
|
|
GroupsCore.isfiniteorder(g::FPGroupElement{<:FreeGroup}) = isone(g) ? true : false
|
|
|
|
## FP Groups
|
|
|
|
struct FPGroup{T,R,S} <: AbstractFPGroup
|
|
gens::Vector{T}
|
|
relations::Vector{Pair{S,S}}
|
|
rws::R
|
|
end
|
|
|
|
KnuthBendix.alphabet(G::FPGroup) = alphabet(rewriting(G))
|
|
rewriting(G::FPGroup) = G.rws
|
|
|
|
relations(G::FPGroup) = G.relations
|
|
|
|
function FPGroup(
|
|
G::AbstractFPGroup,
|
|
rels::AbstractVector{<:Pair{GEl,GEl}};
|
|
ordering = KnuthBendix.LenLex,
|
|
kwargs...,
|
|
) where {GEl<:FPGroupElement}
|
|
|
|
O = ordering(alphabet(G))
|
|
for (lhs, rhs) in rels
|
|
@assert parent(lhs) === parent(rhs) === G
|
|
end
|
|
word_rels = [word(lhs) => word(rhs) for (lhs, rhs) in [relations(G); rels]]
|
|
rws = RewritingSystem(word_rels, O)
|
|
|
|
KnuthBendix.knuthbendix!(rws; kwargs...)
|
|
|
|
return FPGroup(G.gens, rels, rws)
|
|
end
|
|
|
|
function Base.show(io::IO, G::FPGroup)
|
|
print(io, "⟨")
|
|
join(io, gens(G), ", ")
|
|
print(io, " | ")
|
|
join(io, relations(G), ", ")
|
|
print(io, "⟩")
|
|
end
|
|
|
|
## GSymbol aka letter of alphabet
|
|
|
|
abstract type GSymbol end
|
|
Base.literal_pow(::typeof(^), t::GSymbol, ::Val{-1}) = inv(t)
|
|
|
|
function subscriptify(n::Integer)
|
|
subscript_0 = Int(0x2080) # Char(0x2080) -> subscript 0
|
|
return join([Char(subscript_0 + i) for i in reverse(digits(n))], "")
|
|
end
|