1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 14:35:28 +01:00
Groups.jl/test/runtests.jl

179 lines
6.2 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using Groups
using Base.Test
# write your own tests here
s = FGSymbol("s")
t = FGSymbol("t")
@testset "FGSymbols" begin
@testset "defines" begin
@test isa(FGSymbol(string(Char(rand(50:2000)))), Groups.GSymbol)
@test FGSymbol("abc").pow == 1
@test isa(s, FGSymbol)
@test isa(t, FGSymbol)
end
@testset "eltary functions" begin
@test length(s) == 1
@test one(s) == s^0
@test one(s) == one(FGSymbol)
@test Groups.change_pow(s,0) == one(s)
@test length(one(s)) == 0
@test inv(s).pow == -1
@test FGSymbol("s", 3) == Groups.change_pow(s,3)
@test s^2 t^2
end
@testset "powers" begin
s⁴ = Groups.change_pow(s,4)
@test s⁴.pow == 4
@test (s^4).symbols[1] == Groups.change_pow(s,4)
@test s*s == s^2
@test inv(s*s) == inv(s^2)
@test inv(s)^2 == inv(s^2)
@test inv(s)*inv(s) == inv(s^2)
@test inv(s*s) == inv(s)*inv(s)
end
end
@testset "GWords" begin
@testset "defines" begin
@test isa(Groups.GWord(s), Groups.GWord)
@test isa(Groups.GWord(s), FGWord)
@test isa(FGWord(s), Groups.GWord)
@test isa(convert(FGWord, s), GWord)
@test isa(convert(FGWord, s), FGWord)
@test isa(Vector{FGWord}([s,t]), Vector{FGWord})
@test Vector{GWord{FGSymbol}}([s,t]) == Vector{FGWord}([s,t])
@test isa(s*s, FGWord)
@test s*s == s^2
@test t*s s*t
@test Vector{GWord}([s,t]) == [s^2*s^-1, t]
@test hash([t^1,s^1]) == hash([t^2*inv(t),s*inv(s)*s])
end
@testset "eltary functions" begin
@test length(FGWord(s)) == 1
@test length(s*s) == 2
@test length(s*s^-1) == 0
@test length(s*t^-1) == 2
@test isa(one(FGWord), FGWord)
@test one(FGWord).symbols == Vector{FGSymbol}([one(FGSymbol)])
@test isa(one(Groups.GWord{FGSymbol}), Groups.GWord{FGSymbol})
w = s*t*s^-1
@test isa(one(w), FGWord)
@test inv(s*t) == t^-1*s^-1
@test inv(w) == s*t^-1*s^-1
end
@testset "reductions" begin
@test one(FGWord) == one(s)*one(s)
w = GWord{FGSymbol}([s])
push!(w.symbols, (s^-1).symbols[1])
@test Groups.freegroup_reduce!(w) == one(FGWord)
o = (t*s)^3
@test o == t*s*t*s*t*s
p = (t*s)^-3
@test p == s^-1*t^-1*s^-1*t^-1*s^-1*t^-1
@test o*p == one(FGWord)
w = FGWord([o.symbols..., p.symbols...])
@test Groups.freegroup_reduce!(w).symbols ==Vector{FGSymbol}([])
end
@testset "arithmetic" begin
@test Groups.r_multiply!(FGWord(t),[s,t]; reduced=true) == t*s*t
@test Groups.r_multiply!(FGWord(t),[s,t]; reduced=false) == t*s*t
@test Groups.l_multiply!(FGWord(t),[s,t]; reduced=true) == t*s*t
@test Groups.l_multiply!(FGWord(t),[s,t]; reduced=false) == t*s*t
@test (t*s*t^-1)^10 == t*s^10*t^-1
@test (t*s*t^-1)^-10 == t*s^-10*t^-1
end
@testset "replacements" begin
@test Groups.is_subsymbol(s, Groups.change_pow(s,2)) == true
@test Groups.is_subsymbol(s, Groups.change_pow(s,-2)) == false
@test Groups.is_subsymbol(t, Groups.change_pow(s,-2)) == false
@test Groups.is_subsymbol(inv(t), Groups.change_pow(t,-2)) == true
c = s*t*s^-1*t^-1
@test findfirst(c, s^-1*t^-1) == 3
@test findnext(c*s^-1, s^-1*t^-1,3) == 3
@test findnext(c*s^-1*t^-1, s^-1*t^-1,4) == 5
@test findfirst(c*t, c) == 0
w = s*t*s^-1
subst = Dict{FGWord, FGWord}(w => s^1, s*t^-1 => t^4)
@test Groups.replace(c, 1, s*t, one(FGWord)) == s^-1*t^-1
@test Groups.replace(c, 1, w, subst[w]) == s*t^-1
@test Groups.replace(s*c*t^-1, 1, w, subst[w]) == s^2*t^-2
@test Groups.replace(t*c*t, 2, w, subst[w]) == t*s
@test Groups.replace_all!(s*c*s*c*s, subst) == s*t^4*s*t^4*s
end
end
@testset "Automorphisms" begin
@testset "AutSymbol" begin
@test_throws MethodError AutSymbol("a")
@test_throws MethodError AutSymbol("a", 1)
f = AutSymbol("a", 1, :(a(0)), v -> v, v -> v)
@test isa(f, GSymbol)
@test isa(f, AutSymbol)
@test isa(symmetric_AutSymbol([1,2,3,4]), AutSymbol)
@test isa(rmul_AutSymbol(1,2), AutSymbol)
@test isa(lmul_AutSymbol(3,4), AutSymbol)
@test isa(flip_AutSymbol(3), AutSymbol)
end
@testset "AutWords" begin
f = AutSymbol("a", 1, :(a(0)), v -> v, v -> v)
@test isa(GWord(f), GWord)
@test isa(GWord(f), AutWord)
@test isa(AutWord(f), AutWord)
@test isa(f*f, AutWord)
@test isa(f^2, AutWord)
@test isa(f^-1, AutWord)
end
@testset "eltary functions" begin
f = symmetric_AutSymbol([2,1,4,3])
@test isa(inv(f), AutSymbol)
@test isa(f^-1, AutWord)
@test f^-1 == GWord(inv(f))
@test inv(f) == f
end
@testset "reductions/arithmetic" begin
f = symmetric_AutSymbol([2,1,4,3])
= Groups.r_multiply(AutWord(f), [f], reduced=false)
@test Groups.simplify_perms!() == false
@test == one(typeof(f*f))
a = rmul_AutSymbol(1,2)*flip_AutSymbol(2)
b = flip_AutSymbol(2)*inv(rmul_AutSymbol(1,2))
@test a*b == b*a
@test a^3 * b^3 == one(a)
end
@testset "specific Aut(𝔽₄) tests" begin
N = 4
import Combinatorics.nthperm
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
ɛs = [flip_AutSymbol(i) for i in 1:N];
S = vcat(ϱs, λs, σs, ɛs)
S = vcat(S, [inv(s) for s in S])
@test isa(S, Vector{AutSymbol})
@test length(S) == 102
@test length(unique(S)) == 75
S₁ = [GWord(s) for s in unique(S)]
@test isa(S₁, Vector{AutWord})
p = prod(S₁)
@test length(p) == 75
@test Groups.simplify_perms!(p) == false
@test length(p) == 53
@test Groups.join_free_symbols!(p) == true
end
end