1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-12-11 23:06:28 +01:00
Groups.jl/test/AutGroup-tests.jl
2017-07-06 09:13:36 +02:00

177 lines
5.7 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

@testset "Automorphisms" begin
using Nemo
G = PermutationGroup(4)
@testset "AutSymbol" begin
@test_throws MethodError Groups.AutSymbol("a")
@test_throws MethodError Groups.AutSymbol("a", 1)
f = Groups.AutSymbol("a", 1, :(a()), v -> v)
@test isa(f, Groups.GSymbol)
@test isa(f, Groups.AutSymbol)
@test isa(Groups.perm_autsymbol(G([1,2,3,4])), Groups.AutSymbol)
@test isa(Groups.rmul_autsymbol(1,2), Groups.AutSymbol)
@test isa(Groups.lmul_autsymbol(3,4), Groups.AutSymbol)
@test isa(Groups.flip_autsymbol(3), Groups.AutSymbol)
end
a,b,c,d = Nemo.gens(FreeGroup(4))
domain = [a,b,c,d]
@testset "flip_autsymbol correctness" begin
@test Groups.flip_autsymbol(1)(domain) == [a^-1, b,c,d]
@test Groups.flip_autsymbol(2)(domain) == [a, b^-1,c,d]
@test Groups.flip_autsymbol(3)(domain) == [a, b,c^-1,d]
@test Groups.flip_autsymbol(4)(domain) == [a, b,c,d^-1]
@test inv(Groups.flip_autsymbol(1))(domain) == [a^-1, b,c,d]
@test inv(Groups.flip_autsymbol(2))(domain) == [a, b^-1,c,d]
@test inv(Groups.flip_autsymbol(3))(domain) == [a, b,c^-1,d]
@test inv(Groups.flip_autsymbol(4))(domain) == [a, b,c,d^-1]
end
@testset "perm_autsymbol correctness" begin
σ = Groups.perm_autsymbol(G([1,2,3,4]))
@test σ(domain) == domain
@test inv(σ)(domain) == domain
σ = Groups.perm_autsymbol(G([2,3,4,1]))
@test σ(domain) == [b, c, d, a]
@test inv(σ)(domain) == [d, a, b, c]
σ = Groups.perm_autsymbol(G([2,1,4,3]))
@test σ(domain) == [b, a, d, c]
@test inv(σ)(domain) == [b, a, d, c]
σ = Groups.perm_autsymbol(G([2,3,1,4]))
@test σ(domain) == [b,c,a,d]
@test inv(σ)(domain) == [c,a,b,d]
end
@testset "rmul/lmul_autsymbol correctness" begin
i,j = 1,2
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a*b,b,c,d]
@test inv(r)(domain) == [a*b^-1,b,c,d]
@test l(domain) == [b*a,b,c,d]
@test inv(l)(domain) == [b^-1*a,b,c,d]
i,j = 3,1
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a,b,c*a,d]
@test inv(r)(domain) == [a,b,c*a^-1,d]
@test l(domain) == [a,b,a*c,d]
@test inv(l)(domain) == [a,b,a^-1*c,d]
i,j = 4,3
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a,b,c,d*c]
@test inv(r)(domain) == [a,b,c,d*c^-1]
@test l(domain) == [a,b,c,c*d]
@test inv(l)(domain) == [a,b,c,c^-1*d]
i,j = 2,4
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a,b*d,c,d]
@test inv(r)(domain) == [a,b*d^-1,c,d]
@test l(domain) == [a,d*b,c,d]
@test inv(l)(domain) == [a,d^-1*b,c,d]
end
@testset "AutGroup/AutGroupElem constructors" begin
f = Groups.AutSymbol("a", 1, :(a()), v -> v)
@test isa(AutGroupElem(f), Groups.GWord)
@test isa(AutGroupElem(f), AutGroupElem)
@test isa(AutGroup(FreeGroup(3)), Nemo.Group)
@test isa(AutGroup(FreeGroup(1)), Groups.AbstractFPGroup)
A = AutGroup(FreeGroup(1))
@test isa(Nemo.gens(A), Vector{AutGroupElem})
@test length(Nemo.gens(A)) == 1
A = AutGroup(FreeGroup(1), special=true)
@test length(Nemo.gens(A)) == 0
A = AutGroup(FreeGroup(2))
@test length(Nemo.gens(A)) == 7
gens = Nemo.gens(A)
@test isa(A(Groups.rmul_autsymbol(1,2)), AutGroupElem)
@test A(Groups.rmul_autsymbol(1,2)) in gens
@test isa(A(Groups.rmul_autsymbol(2,1)), AutGroupElem)
@test A(Groups.rmul_autsymbol(2,1)) in gens
@test isa(A(Groups.lmul_autsymbol(1,2)), AutGroupElem)
@test A(Groups.lmul_autsymbol(1,2)) in gens
@test isa(A(Groups.lmul_autsymbol(2,1)), AutGroupElem)
@test A(Groups.lmul_autsymbol(2,1)) in gens
@test isa(A(Groups.flip_autsymbol(1)), AutGroupElem)
@test A(Groups.flip_autsymbol(1)) in gens
@test isa(A(Groups.flip_autsymbol(2)), AutGroupElem)
@test A(Groups.flip_autsymbol(2)) in gens
@test isa(A(Groups.perm_autsymbol(PermutationGroup(2)([2,1]))),
AutGroupElem)
@test A(Groups.perm_autsymbol(PermutationGroup(2)([2,1]))) in gens
end
A = AutGroup(FreeGroup(4))
@testset "eltary functions" begin
f = Groups.perm_autsymbol(G([2,3,4,1]))
@test (Groups.change_pow(f, 2)).pow == 1
@test (Groups.change_pow(f, -2)).pow == 1
@test (inv(f)).pow == 1
f = Groups.perm_autsymbol(G([2,1,4,3]))
@test isa(inv(f), Groups.AutSymbol)
@test_throws DomainError f^-1
@test_throws MethodError f*f
@test A(f)^-1 == A(inv(f))
end
@testset "reductions/arithmetic" begin
f = Groups.perm_autsymbol(G([2,3,4,1]))
= Groups.r_multiply(A(f), [f], reduced=false)
@test Groups.simplify_perms!() == false
@test ^2 == A()
a = A(Groups.rmul_autsymbol(1,2))*Groups.flip_autsymbol(2)
b = Groups.flip_autsymbol(2)*A(inv(Groups.rmul_autsymbol(1,2)))
@test a*b == b*a
@test a^3 * b^3 == A()
end
@testset "specific Aut(F4) tests" begin
N = 4
G = AutGroup(FreeGroup(N))
S = G.gens
@test isa(S, Vector{Groups.AutSymbol})
S = [G(s) for s in unique(S)]
@test isa(S, Vector{AutGroupElem})
@test S == Nemo.gens(G)
@test length(S) == 51
S_inv = [S..., [inv(s) for s in S]...]
@test length(unique(S_inv)) == 75
G = AutGroup(FreeGroup(N), special=true, outer=true)
S = Nemo.gens(G)
S_inv = [G(), S..., [inv(s) for s in S]...]
S_inv = unique(S_inv)
B_2 = [i*j for (i,j) in Base.product(S_inv, S_inv)]
@test length(B_2) == 2401
@test length(unique(B_2)) == 1777
end
end