mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-09 05:32:32 +01:00
197 lines
5.7 KiB
Julia
197 lines
5.7 KiB
Julia
using PermutationGroups
|
||
using Groups.KnuthBendix
|
||
|
||
@testset "Wajnryb presentation for Σ₄₁" begin
|
||
|
||
genus = 4
|
||
|
||
Fn = FreeGroup(2genus)
|
||
G = SpecialAutomorphismGroup(Fn)
|
||
|
||
T = Groups.mcg_twists(G)
|
||
|
||
# symplectic pairing in the free Group goes like this:
|
||
# f1 ↔ f5
|
||
# f2 ↔ f6
|
||
# f3 ↔ f7
|
||
# f4 ↔ f8
|
||
|
||
T = let G = G
|
||
(Tas, Tαs, Tes) = Groups.mcg_twists(G)
|
||
Ta = G.(Tas)
|
||
Tα = G.(Tαs)
|
||
Tes = G.(Tes)
|
||
|
||
[Ta; Tα; Tes]
|
||
end
|
||
|
||
a1 = T[1]^-1 # Ta₁
|
||
a2 = T[5]^-1 # Tα₁
|
||
a3 = T[9]^-1 # Te₁₂
|
||
a4 = T[6]^-1 # Tα₂
|
||
a5 = T[12]^-1 # Te₂₃
|
||
a6 = T[7]^-1 # Tα₃
|
||
a7 = T[14]^-1 # Te₃₄
|
||
a8 = T[8]^-1 # Tα₄
|
||
|
||
b0 = T[2]^-1 # Ta₂
|
||
a0 = (a1 * a2 * a3)^4 * b0^-1 # from the 3-chain relation
|
||
X = a4 * a5 * a3 * a4 # auxillary, not present in the Primer
|
||
b1 = X^-1 * a0 * X
|
||
b2 = T[10]^-1 # Te₁₃
|
||
|
||
As = T[[1, 5, 9, 6, 12, 7, 14, 8]] # the inverses of the elements a
|
||
|
||
@testset "preserving relator" begin
|
||
F = Groups.object(G)
|
||
|
||
R = prod(commutator(gens(F,2i+1), gens(F,2i+2)) for i in 0:genus-1)
|
||
|
||
for g in T
|
||
@test g(R) == R
|
||
end
|
||
end
|
||
|
||
@testset "commutation relations" begin
|
||
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for commutativity. Also, a0 is as defined before.
|
||
for (j, aj) in enumerate(As)
|
||
if abs(i - j) > 1
|
||
@test ai * aj == aj * ai
|
||
elseif i ≠ j
|
||
@test ai * aj != aj * ai
|
||
end
|
||
end
|
||
if i != 4
|
||
@test a0 * ai == ai * a0
|
||
end
|
||
end
|
||
end
|
||
|
||
@testset "braid relations" begin
|
||
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for braid relations.
|
||
for (j, aj) in enumerate(As)
|
||
if abs(i - j) == 1
|
||
@test ai * aj * ai == aj * ai * aj
|
||
end
|
||
end
|
||
end
|
||
@test a0 * a4 * a0 == a4 * a0 * a4 # here, a0 and a4 are as before
|
||
end
|
||
|
||
@testset "3-chain relation" begin
|
||
x = a4*a3*a2*a1*a1*a2*a3*a4 # auxillary; does not have a name in the Primer
|
||
@test b0 == x*a0*x^-1
|
||
end
|
||
|
||
@testset "Lantern relation" begin
|
||
|
||
@testset "b2 definition" begin
|
||
@test b2 == (a2 * a3 * a1 * a2)^-1 * b1 * (a2 * a3 * a1 * a2)
|
||
|
||
# some additional tests, checking what explicitly happens to the generators of the π₁ under b2
|
||
d = Groups.domain(b2)
|
||
img = evaluate(b2)
|
||
z = img[3] * d[3]^-1
|
||
|
||
@test img[1] == d[1]
|
||
@test img[2] == d[2]
|
||
@test img[3] == z * d[3]
|
||
@test img[4] == z * d[4] * z^-1
|
||
@test img[5] == z * d[5] * z^-1
|
||
@test img[6] == z * d[6] * z^-1
|
||
@test img[7] == d[7] * z^-1
|
||
@test img[8] == d[8]
|
||
end
|
||
|
||
@testset "b2: commutation relations" begin
|
||
@test b2 * a1 == a1 * b2
|
||
@test b2 * a2 != a2 * b2
|
||
@test b2 * a3 == a3 * b2
|
||
@test b2 * a4 == a4 * b2
|
||
@test b2 * a5 == a5 * b2
|
||
@test b2 * a6 != a6 * b2
|
||
end
|
||
|
||
@testset "b2: braid relations" begin
|
||
@test a2 * b2 * a2 == b2 * a2 * b2
|
||
@test a6 * b2 * a6 == b2 * a6 * b2
|
||
end
|
||
|
||
@testset "lantern" begin
|
||
u = (a6 * a5)^-1 * b1 * (a6 * a5)
|
||
x = (a6 * a5 * a4 * a3 * a2 * u * a1^-1 * a2^-1 * a3^-1 * a4^-1) # yet another auxillary
|
||
# x = (a4^-1*a3^-1*a2^-1*a1^-1*u*a2*a3*a4*a5*a6)
|
||
|
||
b3 = x * a0 * x^-1
|
||
b3im = evaluate(b3)
|
||
b3cim = let g = b3
|
||
f = Groups.compiled(g)
|
||
f(Groups.domain(g))
|
||
end
|
||
@test b3im == b3cim
|
||
@test a0 * b2 * b1 == a1 * a3 * a5 * b3
|
||
|
||
@time evaluate(x)
|
||
let g = b3
|
||
f = Groups.compiled(g)
|
||
f(Groups.domain(g))
|
||
@time f(Groups.domain(g))
|
||
end
|
||
end
|
||
end
|
||
|
||
Base.conj(t::Groups.Transvection, p::Perm) =
|
||
Groups.Transvection(t.id, t.i^p, t.j^p, t.inv)
|
||
|
||
function Base.conj(elt::FPGroupElement, p::Perm)
|
||
G = parent(elt)
|
||
A = alphabet(elt)
|
||
return G([A[conj(A[idx], p)] for idx in word(elt)])
|
||
end
|
||
|
||
@testset "Te₂₃ definition" begin
|
||
Te₁₂, Te₂₃ = T[9], T[12]
|
||
G = parent(Te₁₂)
|
||
F₈ = Groups.object(G)
|
||
(δ, d, γ, c, β, b, α, a) = Groups.gens(F₈)
|
||
|
||
Groups.domain(Te₁₂)
|
||
|
||
img_Te₂₃ = evaluate(Te₂₃)
|
||
y = c * β^-1 * b^-1 * β
|
||
@test img_Te₂₃ == (δ, d, y * γ, y * c * y^-1, β * y^-1, b, α, a)
|
||
|
||
σ = perm"(7,5,3)(8,6,4)"
|
||
Te₂₃_σ = conj(Te₁₂, σ)
|
||
# @test word(Te₂₃_σ) == word(Te₂₃)
|
||
|
||
@test evaluate(Te₂₃_σ) == evaluate(Te₂₃)
|
||
@test Te₂₃ == Te₂₃_σ
|
||
end
|
||
|
||
@testset "Te₃₄ definition" begin
|
||
Te₁₂, Te₃₄ = T[9], T[14]
|
||
G = parent(Te₁₂)
|
||
F₈ = Groups.object(G)
|
||
(δ, d, γ, c, β, b, α, a) = Groups.gens(F₈)
|
||
|
||
σ = perm"(7,3)(8,4)(5,1)(6,2)"
|
||
Te₃₄_σ = conj(Te₁₂, σ)
|
||
@test Te₃₄ == Te₃₄_σ
|
||
end
|
||
|
||
@testset "hyperelliptic τ is central" begin
|
||
|
||
τ = Groups.rotation_element(G)
|
||
τᵍ = τ^genus
|
||
|
||
symplectic_gens = let genus = genus, G = G
|
||
π₁Σ = Groups.SurfaceGroup(genus, 0)
|
||
s_twists = Groups.symplectic_twists(π₁Σ)
|
||
G.(word(t.autFn_word) for t in s_twists)
|
||
end
|
||
|
||
@test all(sg * τᵍ == τᵍ * sg for sg in symplectic_gens)
|
||
end
|
||
end
|