1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 06:30:29 +01:00
Groups.jl/test/AutFn.jl

185 lines
5.3 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

@testset "Automorphisms" begin
@testset "Transvections" begin
@test New.Transvection(:ϱ, 1, 2) isa New.GSymbol
@test New.Transvection(:ϱ, 1, 2) isa New.Transvection
@test New.Transvection(, 1, 2) isa New.GSymbol
@test New.Transvection(, 1, 2) isa New.Transvection
t = New.Transvection(:ϱ, 1, 2)
@test inv(t) isa New.GSymbol
@test inv(t) isa New.Transvection
@test t != inv(t)
s = New.Transvection(:ϱ, 1, 2)
@test t == s
@test hash(t) == hash(s)
s_ = New.Transvection(:ϱ, 1, 3)
@test s_ != s
@test hash(s_) != hash(s)
@test New.gersten_alphabet(3) isa Alphabet
A = New.gersten_alphabet(3)
@test length(A) == 12
end
A4 = Alphabet(
[:a,:A,:b,:B,:c,:C,:d,:D],
[ 2, 1, 4, 3, 6, 5, 8, 7]
)
A5 = Alphabet(
[:a,:A,:b,:B,:c,:C,:d,:D,:e,:E],
[ 2, 1, 4, 3, 6, 5, 8, 7,10, 9]
)
F4 = New.FreeGroup([:a, :b, :c, :d], A4)
A = New.SpecialAutomorphismGroup(F4, maxrules=1000)
a,b,c,d = gens(F4)
D = ntuple(i->gens(F4, i), 4)
@testset "Transvection action correctness" begin
i,j = 1,2
r = New.Transvection(:ϱ,i,j)
l = New.Transvection(,i,j)
(t::New.Transvection)(v::Tuple) = New.evaluate!(v, t, A4)
@test r(deepcopy(D)) == (a*b, b, c, d)
@test inv(r)(deepcopy(D)) == (a*b^-1,b, c, d)
@test l(deepcopy(D)) == (b*a, b, c, d)
@test inv(l)(deepcopy(D)) == (b^-1*a,b, c, d)
i,j = 3,1
r = New.Transvection(:ϱ,i,j)
l = New.Transvection(,i,j)
@test r(deepcopy(D)) == (a, b, c*a, d)
@test inv(r)(deepcopy(D)) == (a, b, c*a^-1,d)
@test l(deepcopy(D)) == (a, b, a*c, d)
@test inv(l)(deepcopy(D)) == (a, b, a^-1*c,d)
i,j = 4,3
r = New.Transvection(:ϱ,i,j)
l = New.Transvection(,i,j)
@test r(deepcopy(D)) == (a, b, c, d*c)
@test inv(r)(deepcopy(D)) == (a, b, c, d*c^-1)
@test l(deepcopy(D)) == (a, b, c, c*d)
@test inv(l)(deepcopy(D)) == (a, b, c, c^-1*d)
i,j = 2,4
r = New.Transvection(:ϱ,i,j)
l = New.Transvection(,i,j)
@test r(deepcopy(D)) == (a, b*d, c, d)
@test inv(r)(deepcopy(D)) == (a, b*d^-1,c, d)
@test l(deepcopy(D)) == (a, d*b, c, d)
@test inv(l)(deepcopy(D)) == (a, d^-1*b,c, d)
end
@testset "AutomorphismGroup constructors" begin
@test A isa New.AbstractFPGroup
@test A isa New.AutomorphismGroup
@test KnuthBendix.alphabet(A) isa Alphabet
@test New.relations(A) isa Vector{<:Pair}
end
@testset "Automorphisms: hash and evaluate" begin
@test New.domain(gens(A, 1)) == D
g, h = gens(A, 1), gens(A, 8)
@test New.evaluate(g*h) == New.evaluate(h*g)
@test (g*h).savedhash == zero(UInt)
a = g*h
b = h*g
@test hash(a) != zero(UInt)
@test hash(a) == hash(b)
@test a.savedhash == b.savedhash
@test length(unique([a,b])) == 1
@test length(unique([g*h, h*g])) == 1
# Not so simple arithmetic: applying starting on the left:
# ϱ₁₂*ϱ₂₁⁻¹*λ₁₂*ε₂ == σ₂₁₃₄
g = gens(A, 1)
x1, x2, x3, x4 = New.domain(g)
@test New.evaluate(g) == (x1*x2, x2, x3, x4)
g = g*inv(gens(A, 4)) # ϱ₂₁
@test New.evaluate(g) == (x1*x2, x1^-1, x3, x4)
g = g*gens(A, 13)
@test New.evaluate(g) == (x2, x1^-1, x3, x4)
end
@testset "Automorphisms: SAut(F₄)" begin
N = 4
G = New.SpecialAutomorphismGroup(New.FreeGroup(N))
S = gens(G)
@test S isa Vector{<:New.FPGroupElement{<:New.AutomorphismGroup{<:New.FreeGroup}}}
@test length(S) == 2*N*(N-1)
@test length(unique(S)) == length(S)
S_sym = [S; inv.(S)]
@test length(S_sym) == length(unique(S_sym))
pushfirst!(S_sym, one(G))
B_2 = [i*j for (i,j) in Base.product(S_sym, S_sym)]
@test length(B_2) == 2401
@test length(unique(B_2)) == 1777
@test all(g->isone(inv(g)*g), B_2)
@test all(g->isone(g*inv(g)), B_2)
end
@testset "GroupsCore conformance" begin
test_Group_interface(A)
g = A(rand(1:length(KnuthBendix.alphabet(A)), 10))
h = A(rand(1:length(KnuthBendix.alphabet(A)), 10))
test_GroupElement_interface(g, h)
end
end
# using Random
# using GroupsCore
#
# A = New.SpecialAutomorphismGroup(New.FreeGroup(4), maxrules=2000, ordering=KnuthBendix.RecursivePathOrder)
#
# # for seed in 1:1000
# let seed = 68
# N = 14
# Random.seed!(seed)
# g = A(rand(1:length(KnuthBendix.alphabet(A)), N))
# h = A(rand(1:length(KnuthBendix.alphabet(A)), N))
# @info "seed=$seed" g h
# @time isone(g*inv(g))
# @time isone(inv(g)*g)
# @info "" length(New.word(New.normalform!(g*inv(g)))) length(New.word(New.normalform!(inv(g)*g)))
# a = commutator(g, h, g)
# b = conj(inv(g), h) * conj(conj(g, h), g)
#
# @info length(New.word(a))
# @info length(New.word(b))
#
# w = a*inv(b)
# @info length(New.word(w))
# New.normalform!(w)
# @info length(New.word(w))
#
#
# #
# # @time ima = New.evaluate(a)
# # @time imb = New.evaluate(b)
# # @info "" a b ima imb
# # @time a == b
# end