1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 14:35:28 +01:00
Groups.jl/test/AutSigma_41.jl

197 lines
5.7 KiB
Julia
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using PermutationGroups
using Groups.KnuthBendix
@testset "Wajnryb presentation for Σ₄₁" begin
genus = 4
Fn = FreeGroup(2genus)
G = SpecialAutomorphismGroup(Fn)
T = Groups.mcg_twists(G)
# symplectic pairing in the free Group goes like this:
# f1 ↔ f5
# f2 ↔ f6
# f3 ↔ f7
# f4 ↔ f8
T = let G = G
(Tas, Tαs, Tes) = Groups.mcg_twists(G)
Ta = G.(Tas)
Tα = G.(Tαs)
Tes = G.(Tes)
[Ta; Tα; Tes]
end
a1 = T[1]^-1 # Ta₁
a2 = T[5]^-1 # Tα
a3 = T[9]^-1 # Te₁₂
a4 = T[6]^-1 # Tα
a5 = T[12]^-1 # Te₂₃
a6 = T[7]^-1 # Tα
a7 = T[14]^-1 # Te₃₄
a8 = T[8]^-1 # Tα
b0 = T[2]^-1 # Ta₂
a0 = (a1 * a2 * a3)^4 * b0^-1 # from the 3-chain relation
X = a4 * a5 * a3 * a4 # auxillary, not present in the Primer
b1 = X^-1 * a0 * X
b2 = T[10]^-1 # Te₁₃
As = T[[1, 5, 9, 6, 12, 7, 14, 8]] # the inverses of the elements a
@testset "preserving relator" begin
F = Groups.object(G)
R = prod(commutator(gens(F,2i+1), gens(F,2i+2)) for i in 0:genus-1)
for g in T
@test g(R) == R
end
end
@testset "commutation relations" begin
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for commutativity. Also, a0 is as defined before.
for (j, aj) in enumerate(As)
if abs(i - j) > 1
@test ai * aj == aj * ai
elseif i j
@test ai * aj != aj * ai
end
end
if i != 4
@test a0 * ai == ai * a0
end
end
end
@testset "braid relations" begin
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for braid relations.
for (j, aj) in enumerate(As)
if abs(i - j) == 1
@test ai * aj * ai == aj * ai * aj
end
end
end
@test a0 * a4 * a0 == a4 * a0 * a4 # here, a0 and a4 are as before
end
@testset "3-chain relation" begin
x = a4*a3*a2*a1*a1*a2*a3*a4 # auxillary; does not have a name in the Primer
@test b0 == x*a0*x^-1
end
@testset "Lantern relation" begin
@testset "b2 definition" begin
@test b2 == (a2 * a3 * a1 * a2)^-1 * b1 * (a2 * a3 * a1 * a2)
# some additional tests, checking what explicitly happens to the generators of the π₁ under b2
d = Groups.domain(b2)
img = evaluate(b2)
z = img[3] * d[3]^-1
@test img[1] == d[1]
@test img[2] == d[2]
@test img[3] == z * d[3]
@test img[4] == z * d[4] * z^-1
@test img[5] == z * d[5] * z^-1
@test img[6] == z * d[6] * z^-1
@test img[7] == d[7] * z^-1
@test img[8] == d[8]
end
@testset "b2: commutation relations" begin
@test b2 * a1 == a1 * b2
@test b2 * a2 != a2 * b2
@test b2 * a3 == a3 * b2
@test b2 * a4 == a4 * b2
@test b2 * a5 == a5 * b2
@test b2 * a6 != a6 * b2
end
@testset "b2: braid relations" begin
@test a2 * b2 * a2 == b2 * a2 * b2
@test a6 * b2 * a6 == b2 * a6 * b2
end
@testset "lantern" begin
u = (a6 * a5)^-1 * b1 * (a6 * a5)
x = (a6 * a5 * a4 * a3 * a2 * u * a1^-1 * a2^-1 * a3^-1 * a4^-1) # yet another auxillary
# x = (a4^-1*a3^-1*a2^-1*a1^-1*u*a2*a3*a4*a5*a6)
b3 = x * a0 * x^-1
b3im = evaluate(b3)
b3cim = let g = b3
f = Groups.compiled(g)
f(Groups.domain(g))
end
@test b3im == b3cim
@test a0 * b2 * b1 == a1 * a3 * a5 * b3
@time evaluate(x)
let g = b3
f = Groups.compiled(g)
f(Groups.domain(g))
@time f(Groups.domain(g))
end
end
end
Base.conj(t::Groups.Transvection, p::Perm) =
Groups.Transvection(t.id, t.i^p, t.j^p, t.inv)
function Base.conj(elt::FPGroupElement, p::Perm)
G = parent(elt)
A = alphabet(elt)
return G([A[conj(A[idx], p)] for idx in word(elt)])
end
@testset "Te₂₃ definition" begin
Te₁₂, Te₂₃ = T[9], T[12]
G = parent(Te₁₂)
F₈ = Groups.object(G)
(δ, d, γ, c, β, b, α, a) = Groups.gens(F₈)
Groups.domain(Te₁₂)
img_Te₂₃ = evaluate(Te₂₃)
y = c * β^-1 * b^-1 * β
@test img_Te₂₃ == (δ, d, y * γ, y * c * y^-1, β * y^-1, b, α, a)
σ = perm"(7,5,3)(8,6,4)"
Te₂₃_σ = conj(Te₁₂, σ)
# @test word(Te₂₃_σ) == word(Te₂₃)
@test evaluate(Te₂₃_σ) == evaluate(Te₂₃)
@test Te₂₃ == Te₂₃_σ
end
@testset "Te₃₄ definition" begin
Te₁₂, Te₃₄ = T[9], T[14]
G = parent(Te₁₂)
F₈ = Groups.object(G)
(δ, d, γ, c, β, b, α, a) = Groups.gens(F₈)
σ = perm"(7,3)(8,4)(5,1)(6,2)"
Te₃₄_σ = conj(Te₁₂, σ)
@test Te₃₄ == Te₃₄_σ
end
@testset "hyperelliptic τ is central" begin
τ = Groups.rotation_element(G)
τᵍ = τ^genus
symplectic_gens = let genus = genus, G = G
π₁Σ = Groups.SurfaceGroup(genus, 0)
s_twists = Groups.symplectic_twists(π₁Σ)
G.(word(t.autFn_word) for t in s_twists)
end
@test all(sg * τᵍ == τᵍ * sg for sg in symplectic_gens)
end
end