2017-06-06 12:15:30 +02:00
|
|
|
using JLD
|
|
|
|
using JuMP
|
|
|
|
using SCS
|
|
|
|
|
|
|
|
using GroupRings
|
|
|
|
using PropertyT
|
|
|
|
|
|
|
|
using ArgParse
|
|
|
|
|
2017-06-06 17:54:05 +02:00
|
|
|
include("OrbitDecomposition.jl")
|
|
|
|
|
2017-06-06 12:15:30 +02:00
|
|
|
immutable ProblemData{T}
|
|
|
|
name::String
|
|
|
|
Us::Vector{SparseMatrixCSC{Float64,Int}}
|
|
|
|
Ps::Vector{Array{JuMP.Variable,2}}
|
|
|
|
cnstr::Vector{T}
|
|
|
|
laplacian::SparseVector{Float64}
|
|
|
|
laplacianSq::SparseVector{Float64}
|
|
|
|
dims::Vector{Int}
|
|
|
|
end
|
|
|
|
|
|
|
|
function sparsify!{T}(U::AbstractArray{T}, eps=eps(T))
|
|
|
|
# n = rank(U)
|
|
|
|
U[abs.(U) .< eps] = zero(T)
|
|
|
|
# @assert rank(U) == n
|
|
|
|
return sparse(U)
|
|
|
|
end
|
|
|
|
|
|
|
|
sparsify{T}(U::AbstractArray{T}, eps=eps(T)) = sparsify!(deepcopy(U), eps)
|
|
|
|
|
|
|
|
small_to_zero!{T}(A::AbstractArray{T}, eps=eps(T)) = A[abs(A) .< eps] = zero(T)
|
|
|
|
|
|
|
|
function orbit_spvector(vect::AbstractVector, orbits)
|
|
|
|
orb_vector = spzeros(length(orbits))
|
|
|
|
|
|
|
|
for (i,o) in enumerate(orbits)
|
|
|
|
k = vect[collect(o)]
|
|
|
|
val = k[1]
|
|
|
|
@assert all(k .== val)
|
|
|
|
orb_vector[i] = val
|
|
|
|
end
|
|
|
|
|
|
|
|
return orb_vector
|
|
|
|
end
|
|
|
|
|
|
|
|
function orbit_constraint(cnstrs::Vector{Vector{Vector{Int64}}}, n)
|
|
|
|
result = spzeros(n,n)
|
|
|
|
for cnstr in cnstrs
|
|
|
|
for p in cnstr
|
|
|
|
result[p[1],p[2]] += 1.0
|
|
|
|
end
|
|
|
|
end
|
|
|
|
return 1/length(cnstrs)*result
|
|
|
|
end
|
|
|
|
|
|
|
|
function init_model(Uπs)
|
|
|
|
m = JuMP.Model();
|
|
|
|
l = size(Uπs,1)
|
|
|
|
P = Vector{Array{JuMP.Variable,2}}(l)
|
|
|
|
|
|
|
|
for k in 1:l
|
|
|
|
s = size(Uπs[k],2)
|
|
|
|
P[k] = JuMP.@variable(m, P[k][i=1:s, j=1:s])
|
|
|
|
JuMP.@SDconstraint(m, P[k] >= 0.0)
|
|
|
|
end
|
|
|
|
|
|
|
|
JuMP.@variable(m, λ >= 0.0)
|
|
|
|
JuMP.@objective(m, Max, λ)
|
|
|
|
return m, P
|
|
|
|
end
|
|
|
|
|
|
|
|
function init_ProblemData(name::String)
|
|
|
|
splap = load(joinpath(name, "delta.jld"), "delta");
|
|
|
|
pm = load(joinpath(name, "pm.jld"), "pm");
|
|
|
|
cnstr = PropertyT.constraints_from_pm(pm);
|
|
|
|
splap² = GroupRings.mul(splap, splap, pm);
|
|
|
|
|
|
|
|
Uπs = load(joinpath(name, "U_pis.jld"), "Uπs");
|
|
|
|
Uπs = sparsify.(Uπs);
|
2017-06-06 17:53:33 +02:00
|
|
|
#dimensions of the corresponding πs:
|
|
|
|
dims load(joinpath(name, "U_pis.jld"), "dims")
|
2017-06-06 12:15:30 +02:00
|
|
|
|
|
|
|
m, P = init_model(Uπs);
|
|
|
|
|
|
|
|
orbits = load(joinpath(name, "orbits.jld"), "orbits");
|
|
|
|
n = size(Uπs[1],1)
|
|
|
|
orb_spcnstrm = [orbit_constraint(cnstr[collect(orb)], n) for orb in orbits]
|
|
|
|
orb_splap = orbit_spvector(splap, orbits)
|
|
|
|
orb_splap² = orbit_spvector(splap², orbits)
|
|
|
|
|
|
|
|
orb_SOutF4data = ProblemData(name, Uπs, P, orb_spcnstrm, orb_splap, orb_splap², dims);
|
|
|
|
|
|
|
|
return m, orb_SOutF4data
|
|
|
|
end
|
|
|
|
|
|
|
|
function transform{T}(U::AbstractArray{T,2}, V::AbstractArray{T,2}, eps=eps(T))
|
|
|
|
w = U'*V*U
|
|
|
|
sparsify!(w, eps)
|
|
|
|
dropzeros!(w)
|
|
|
|
return w
|
|
|
|
end
|
|
|
|
|
|
|
|
A(data::ProblemData, π, t) = data.dims[π]*transform(data.Us[π], data.cnstr[t])
|
|
|
|
|
|
|
|
function constrLHS(m::JuMP.Model, data::ProblemData, t)
|
|
|
|
l = endof(data.Us)
|
|
|
|
lhs = @expression(m, sum(vecdot(A(data, π, t), data.Ps[π]) for π in 1:l))
|
|
|
|
return lhs
|
|
|
|
end
|
|
|
|
|
|
|
|
function addconstraints!(m::JuMP.Model, data::ProblemData, l::Int=length(data.cnstr); var::Symbol = :λ)
|
|
|
|
λ = getvariable(m, var)
|
|
|
|
for t in 1:l
|
|
|
|
d, d² = data.laplacian[t], data.laplacianSq[t]
|
|
|
|
lhs = constrLHS(m, data, t)
|
|
|
|
if lhs == zero(lhs)
|
|
|
|
if d == 0 && d² == 0
|
|
|
|
info("Detected empty constraint")
|
|
|
|
continue
|
|
|
|
else
|
|
|
|
warn("Adding unsatisfiable constraint!")
|
|
|
|
end
|
|
|
|
end
|
|
|
|
JuMP.@constraint(m, lhs == d² - λ*d)
|
|
|
|
end
|
|
|
|
end
|
|
|
|
|
|
|
|
function reconstructP(m::JuMP.Model, data::ProblemData)
|
|
|
|
computedPs = [getvalue(P) for P in data.Ps]
|
|
|
|
return sum(data.dims[π]*data.Us[π]*computedPs[π]*data.Us[π]' for π in 1:endof(data.Ps))
|
|
|
|
end
|
|
|
|
|
|
|
|
function cpuinfo_physicalcores()
|
|
|
|
maxcore = -1
|
|
|
|
for line in eachline("/proc/cpuinfo")
|
|
|
|
if startswith(line, "core id")
|
|
|
|
maxcore = max(maxcore, parse(Int, split(line, ':')[2]))
|
|
|
|
end
|
|
|
|
end
|
|
|
|
maxcore < 0 && error("failure to read core ids from /proc/cpuinfo")
|
|
|
|
return maxcore + 1
|
|
|
|
end
|
|
|
|
|
|
|
|
function parse_commandline()
|
|
|
|
s = ArgParseSettings()
|
|
|
|
|
|
|
|
@add_arg_table s begin
|
|
|
|
"--tol"
|
|
|
|
help = "set numerical tolerance for the SDP solver (default: 1e-5)"
|
|
|
|
arg_type = Float64
|
|
|
|
default = 1e-5
|
|
|
|
"--iterations"
|
|
|
|
help = "set maximal number of iterations for the SDP solver (default: 20000)"
|
|
|
|
arg_type = Int
|
|
|
|
default = 20000
|
|
|
|
"--upper-bound"
|
|
|
|
help = "Set an upper bound for the spectral gap (default: Inf)"
|
|
|
|
arg_type = Float64
|
|
|
|
default = Inf
|
|
|
|
"--cpus"
|
|
|
|
help = "Set number of cpus used by solver (default: auto)"
|
|
|
|
arg_type = Int
|
|
|
|
required = false
|
2017-06-06 17:53:50 +02:00
|
|
|
"-N"
|
|
|
|
help = "Consider automorphisms of free group on N generators (default: N=2)"
|
|
|
|
arg_type = Int
|
|
|
|
default = 2
|
2017-06-06 18:00:23 +02:00
|
|
|
"--radius"
|
|
|
|
help = "Find the decomposition over B_r(e,S)"
|
|
|
|
arg_type = Int
|
|
|
|
default = 2
|
2017-06-06 12:15:30 +02:00
|
|
|
end
|
|
|
|
|
|
|
|
return parse_args(s)
|
|
|
|
end
|
|
|
|
|
|
|
|
function create_SDP_problem(name::String; upper_bound=Inf)
|
|
|
|
info(PropertyT.logger, "Loading data....")
|
|
|
|
t = @timed SDP_problem, orb_data = init_ProblemData(name);
|
|
|
|
info(PropertyT.logger, PropertyT.timed_msg(t))
|
|
|
|
|
|
|
|
if upper_bound < Inf
|
|
|
|
λ = JuMP.getvariable(SDP_problem, :λ)
|
|
|
|
JuMP.@constraint(SDP_problem, λ <= upper_bound)
|
|
|
|
end
|
|
|
|
|
|
|
|
info(PropertyT.logger, "Adding constraints... ")
|
|
|
|
t = @timed addconstraints!(SDP_problem, orb_data)
|
|
|
|
info(PropertyT.logger, PropertyT.timed_msg(t))
|
|
|
|
|
|
|
|
return SDP_problem, orb_data
|
|
|
|
end
|
|
|
|
|
|
|
|
function λandP(m::JuMP.Model, data::ProblemData)
|
|
|
|
info(PropertyT.logger, "Solving SDP problem...")
|
|
|
|
varλ = JuMP.getvariable(m, :λ)
|
|
|
|
varP = data.Ps
|
|
|
|
λ, P = PropertyT.λandP(data.name, m, varλ, varP)
|
|
|
|
|
|
|
|
recP = reconstructP(m, data)
|
|
|
|
fname = PropertyT.λSDPfilenames(data.name)[2]
|
|
|
|
save(fname, "origP", P, "P", recP)
|
|
|
|
return λ, recP
|
|
|
|
end
|
|
|
|
|
2017-06-06 17:54:44 +02:00
|
|
|
function init_data(name::String, N::Int; radius=2)
|
|
|
|
|
|
|
|
ex(fname) = isfile(joinpath(name, fname))
|
|
|
|
|
|
|
|
conditions = ex.(["delta.jld", "pm.jld", "U_pis.jld", "orbits.jld"])
|
|
|
|
if !all(conditions)
|
|
|
|
SOutFN = AutGroup(FreeGroup(N), special=true, outer=true)
|
|
|
|
info(logger, SOutFN)
|
|
|
|
S = generators(SOutFN);
|
|
|
|
S = [S; [inv(s) for s in S]]
|
|
|
|
info(logger, "Symmetric generating set of size $(length(S))")
|
|
|
|
info(logger, S)
|
|
|
|
compute_orbit_data(name, SOutFN, S, radius=radius)
|
|
|
|
end
|
|
|
|
return 0
|
|
|
|
end
|
|
|
|
|
2017-06-06 12:15:30 +02:00
|
|
|
function main()
|
2017-06-06 18:01:59 +02:00
|
|
|
parsed_args = parse_commandline()
|
2017-06-06 12:15:30 +02:00
|
|
|
|
2017-06-06 18:01:59 +02:00
|
|
|
N = parsed_args["N"]
|
2017-06-06 18:00:23 +02:00
|
|
|
radius = parsed_args["radius"]
|
2017-06-06 18:01:59 +02:00
|
|
|
dirname = "SOutF$(N)_E_r=$radius"
|
2017-06-06 12:15:30 +02:00
|
|
|
|
2017-06-06 18:01:59 +02:00
|
|
|
isdir(dirname) || mkdir(dirname)
|
2017-06-06 12:15:30 +02:00
|
|
|
|
2017-06-06 18:01:59 +02:00
|
|
|
logger = PropertyT.setup_logging(dirname)
|
2017-06-06 12:15:30 +02:00
|
|
|
|
|
|
|
if parsed_args["cpus"] != nothing
|
|
|
|
if parsed_args["cpus"] > cpuinfo_physicalcores()
|
|
|
|
warn("Number of specified cores exceeds the physical core cound. Performance will suffer.")
|
|
|
|
end
|
|
|
|
Blas.set_num_threads(parsed_args["cpus"])
|
|
|
|
end
|
|
|
|
|
2017-06-06 17:59:59 +02:00
|
|
|
|
2017-06-06 18:02:33 +02:00
|
|
|
init_data(dirname, N, radius=radius)
|
|
|
|
|
2017-06-06 12:15:30 +02:00
|
|
|
tol = parsed_args["tol"]
|
|
|
|
iterations = parsed_args["iterations"]
|
|
|
|
upper_bound = parsed_args["upper-bound"]
|
|
|
|
|
|
|
|
solver = SCS.SCSSolver(eps=tol, max_iters=iterations, verbose=true, linearsolver=SCS.Indirect)
|
|
|
|
|
2017-06-06 18:02:54 +02:00
|
|
|
fnames = PropertyT.λSDPfilenames(dirname)
|
|
|
|
if all(isfile.(fnames))
|
|
|
|
λ, P = PropertyT.λandP(dirname)
|
2017-06-06 12:15:30 +02:00
|
|
|
else
|
|
|
|
info(logger, "Creating SDP problem...")
|
2017-06-06 18:02:54 +02:00
|
|
|
SDP_problem, orb_data = create_SDP_problem(dirname, upper_bound=upper_bound)
|
2017-06-06 12:15:30 +02:00
|
|
|
JuMP.setsolver(SDP_problem, solver)
|
|
|
|
λ, P = λandP(SDP_problem, orb_data)
|
|
|
|
end
|
|
|
|
|
|
|
|
info(PropertyT.logger, "λ = $λ")
|
|
|
|
info(PropertyT.logger, "sum(P) = $(sum(P))")
|
|
|
|
info(PropertyT.logger, "maximum(P) = $(maximum(P))")
|
|
|
|
info(PropertyT.logger, "minimum(P) = $(minimum(P))")
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
main()
|