201 lines
5.8 KiB
Julia
201 lines
5.8 KiB
Julia
|
using AbstractAlgebra
|
|||
|
using Groups
|
|||
|
using GroupRings
|
|||
|
using PropertyT
|
|||
|
|
|||
|
using SCS
|
|||
|
solver(tol, iterations) =
|
|||
|
SCSSolver(linearsolver=SCS.Direct,
|
|||
|
eps=tol, max_iters=iterations,
|
|||
|
alpha=1.95, acceleration_lookback=1)
|
|||
|
|
|||
|
include("../main.jl")
|
|||
|
|
|||
|
using PropertyTGroups
|
|||
|
|
|||
|
args = Dict("SAut" => 5, "upper-bound" => 10.0, "radius" => 2, "nosymmetry"=>false, "tol"=>1e-10, "iterations" =>200000, "repetitions"=>5)
|
|||
|
|
|||
|
Gr = PropertyTGroups.PropertyTGroup(args)
|
|||
|
sett = PropertyT.Settings(Gr, args,
|
|||
|
solver(args["tol"], args["iterations"]))
|
|||
|
|
|||
|
@show sett
|
|||
|
|
|||
|
fullpath = PropertyT.fullpath(sett)
|
|||
|
isdir(fullpath) || mkpath(fullpath)
|
|||
|
# setup_logging(PropertyT.filename(fullpath, :fulllog), :fulllog)
|
|||
|
|
|||
|
function (p::perm)(A::GroupRingElem)
|
|||
|
RG = parent(A)
|
|||
|
T = eltype(A.coeffs)
|
|||
|
result = zero(RG, T)
|
|||
|
|
|||
|
for (idx, c) in enumerate(A.coeffs)
|
|||
|
if c!= zero(T)
|
|||
|
result[p(RG.basis[idx])] = c
|
|||
|
end
|
|||
|
end
|
|||
|
return result
|
|||
|
end
|
|||
|
|
|||
|
function small_generating_set(RG::GroupRing{AutGroup{N}}, n) where N
|
|||
|
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
|||
|
|
|||
|
rmuls = [Groups.rmul_autsymbol(i,j) for (i,j) in indexing]
|
|||
|
lmuls = [Groups.lmul_autsymbol(i,j) for (i,j) in indexing]
|
|||
|
gen_set = RG.group.([rmuls; lmuls])
|
|||
|
|
|||
|
return [gen_set; inv.(gen_set)]
|
|||
|
end
|
|||
|
|
|||
|
function computeX(RG::GroupRing{AutGroup{N}}) where N
|
|||
|
Tn = small_generating_set(RG, N-1)
|
|||
|
|
|||
|
ℤ = Int64
|
|||
|
Δn = length(Tn)*one(RG, ℤ) - RG(Tn, ℤ);
|
|||
|
|
|||
|
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
|
|||
|
|
|||
|
@time X = sum(σ(Δn)*sum(τ(Δn) for τ ∈ Alt_N if τ ≠ σ) for σ in Alt_N);
|
|||
|
return X
|
|||
|
end
|
|||
|
|
|||
|
function Sq(RG::GroupRing{AutGroup{N}}) where N
|
|||
|
T2 = small_generating_set(RG, 2)
|
|||
|
ℤ = Int64
|
|||
|
Δ₂ = length(T2)*one(RG, ℤ) - RG(T2, ℤ);
|
|||
|
|
|||
|
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
|
|||
|
elt = sum(σ(Δ₂)^2 for σ in Alt_N)
|
|||
|
return elt
|
|||
|
end
|
|||
|
|
|||
|
function Adj(RG::GroupRing{AutGroup{N}}) where N
|
|||
|
T2 = small_generating_set(RG, 2)
|
|||
|
|
|||
|
ℤ = Int64
|
|||
|
Δ₂ = length(T2)*one(RG, ℤ) - RG(T2, ℤ);
|
|||
|
|
|||
|
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
|
|||
|
|
|||
|
adj(σ::perm, τ::perm, i=1, j=2) = Set([σ[i], σ[j]]) ∩ Set([τ[i], τ[j]])
|
|||
|
adj(σ::perm) = [τ for τ in Alt_N if length(adj(σ, τ)) == 1]
|
|||
|
|
|||
|
@time elt = sum(σ(Δ₂)*sum(τ(Δ₂) for τ in adj(σ)) for σ in Alt_N);
|
|||
|
# return RG(elt.coeffs÷factorial(N-2)^2)
|
|||
|
return elt
|
|||
|
end
|
|||
|
|
|||
|
function Op(RG::GroupRing{AutGroup{N}}) where N
|
|||
|
T2 = small_generating_set(RG, 2)
|
|||
|
|
|||
|
ℤ = Int64
|
|||
|
Δ₂ = length(T2)*one(RG, ℤ) - RG(T2, ℤ);
|
|||
|
|
|||
|
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
|
|||
|
|
|||
|
adj(σ::perm, τ::perm, i=1, j=2) = Set([σ[i], σ[j]]) ∩ Set([τ[i], τ[j]])
|
|||
|
adj(σ::perm) = [τ for τ in Alt_N if length(adj(σ, τ)) == 0]
|
|||
|
|
|||
|
@time elt = sum(σ(Δ₂)*sum(τ(Δ₂) for τ in adj(σ)) for σ in Alt_N);
|
|||
|
# return RG(elt.coeffs÷factorial(N-2)^2)
|
|||
|
return elt
|
|||
|
end
|
|||
|
|
|||
|
const ELT_FILE = joinpath(dirname(PropertyT.filename(sett, :Δ)), "SqAdjOp_coeffs.jld")
|
|||
|
const WARMSTART_FILE = PropertyT.filename(sett, :warmstart)
|
|||
|
|
|||
|
if isfile(PropertyT.filename(sett,:Δ)) && isfile(ELT_FILE) &&
|
|||
|
isfile(PropertyT.filename(sett, :OrbitData))
|
|||
|
# cached
|
|||
|
Δ = PropertyT.loadGRElem(PropertyT.filename(sett,:Δ), sett.G)
|
|||
|
RG = parent(Δ)
|
|||
|
orbit_data = load(PropertyT.filename(sett, :OrbitData), "OrbitData")
|
|||
|
sq_c, adj_c, op_c = load(ELT_FILE, "Sq", "Adj", "Op")
|
|||
|
# elt = ELT_FILE, sett.G)
|
|||
|
sq = GroupRingElem(sq_c, RG)
|
|||
|
adj = GroupRingElem(adj_c, RG)
|
|||
|
op = GroupRingElem(op_c, RG);
|
|||
|
else
|
|||
|
info("Compute Laplacian")
|
|||
|
Δ = PropertyT.Laplacian(sett.S, sett.radius)
|
|||
|
RG = parent(Δ)
|
|||
|
|
|||
|
info("Compute Sq, Adj, Op")
|
|||
|
@time sq, adj, op = Sq(RG), Adj(RG), Op(RG)
|
|||
|
|
|||
|
PropertyT.saveGRElem(PropertyT.filename(sett, :Δ), Δ)
|
|||
|
save(ELT_FILE, "Sq", sq.coeffs, "Adj", adj.coeffs, "Op", op.coeffs)
|
|||
|
|
|||
|
info("Compute OrbitData")
|
|||
|
if !isfile(PropertyT.filename(sett, :OrbitData))
|
|||
|
orbit_data = PropertyT.OrbitData(parent(Y), sett.autS)
|
|||
|
save(PropertyT.filename(sett, :OrbitData), "OrbitData", orbit_data)
|
|||
|
else
|
|||
|
orbit_data = load(PropertyT.filename(sett, :OrbitData), "OrbitData")
|
|||
|
end
|
|||
|
end;
|
|||
|
|
|||
|
|
|||
|
|
|||
|
orbit_data = PropertyT.decimate(orbit_data);
|
|||
|
|
|||
|
elt = adj+3op;
|
|||
|
|
|||
|
SDP_problem, varλ, varP = PropertyT.SOS_problem(elt, Δ, orbit_data; upper_bound=sett.upper_bound)
|
|||
|
|
|||
|
begin
|
|||
|
using SCS
|
|||
|
scs_solver = SCS.SCSSolver(linearsolver=SCS.Direct,
|
|||
|
eps=sett.tol,
|
|||
|
max_iters=args["iterations"],
|
|||
|
alpha=1.95,
|
|||
|
acceleration_lookback=1)
|
|||
|
|
|||
|
JuMP.setsolver(SDP_problem, scs_solver)
|
|||
|
end
|
|||
|
|
|||
|
λ = Ps = nothing
|
|||
|
ws = PropertyT.warmstart(sett)
|
|||
|
|
|||
|
using ProgressMeter
|
|||
|
|
|||
|
@showprogress "Running SDP optimization step... " for i in 1:args["repetitions"]
|
|||
|
# while true
|
|||
|
λ, Ps, ws = PropertyT.solve(PropertyT.filename(sett, :solverlog),
|
|||
|
SDP_problem, varλ, varP, ws);
|
|||
|
|
|||
|
if all((!isnan).(ws[1]))
|
|||
|
save(WARMSTART_FILE, "warmstart", ws, "λ", λ, "Ps", Ps)
|
|||
|
save(WARMSTART_FILE[1:end-4]*"_$(now()).jld", "warmstart", ws, "λ", λ, "Ps", Ps)
|
|||
|
else
|
|||
|
warn("No valid solution was saved!")
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
function check_SOS_precision(Q::Matrix, eoi::GroupRingElem)
|
|||
|
RG = parent(eoi)
|
|||
|
@time sos = PropertyT.compute_SOS(RG, Q);
|
|||
|
residue = eoi - sos
|
|||
|
return norm(residue, 1)
|
|||
|
end
|
|||
|
|
|||
|
info("Reconstructing P...")
|
|||
|
@time P = PropertyT.reconstruct(Ps, orbit_data);
|
|||
|
save(PropertyT.filename(sett, :solution), "λ", λ, "P", P)
|
|||
|
|
|||
|
addprocs(4)
|
|||
|
@everywhere using PropertyT
|
|||
|
|
|||
|
@time const Q = real(sqrtm(P));
|
|||
|
const EOI = elt - λ*Δ;
|
|||
|
@show λ - 2^3*check_SOS_precision(Q, EOI);
|
|||
|
|
|||
|
using IntervalArithmetic
|
|||
|
Qint = PropertyT.augIdproj(Q);
|
|||
|
@assert all([zero(eltype(Q)) in sum(view(Qint, :, i)) for i in 1:size(Qint, 2)])
|
|||
|
|
|||
|
EOIint = GroupRingElem([@interval(c) for c in EOI.coeffs], parent(Δ));
|
|||
|
b_int = check_SOS_precision(Qint, EOIint)
|
|||
|
@show @interval(λ) - 2^3*b_int;
|