249 lines
7.3 KiB
Julia
249 lines
7.3 KiB
Julia
|
module DirectProducts
|
|||
|
|
|||
|
using Nemo
|
|||
|
|
|||
|
import Base: show, ==, hash, deepcopy_internal
|
|||
|
import Base: ×, *, inv
|
|||
|
|
|||
|
import Nemo: parent, parent_type, elem_type
|
|||
|
import Nemo: elements, order, Group, GroupElem, Ring
|
|||
|
|
|||
|
export DirectProductGroup, DirectProductGroupElem
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# DirectProductGroup / DirectProductGroupElem
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
doc"""
|
|||
|
DirectProductGroup(factors::Vector{Group}) <: Group
|
|||
|
Implements direct product of groups as vector factors. The group operation is
|
|||
|
`*` distributed component-wise, with component-wise identity as neutral element.
|
|||
|
"""
|
|||
|
|
|||
|
type DirectProductGroup <: Group
|
|||
|
factors::Vector{Group}
|
|||
|
operations::Vector{Function}
|
|||
|
end
|
|||
|
|
|||
|
type DirectProductGroupElem <: GroupElem
|
|||
|
elts::Vector{GroupElem}
|
|||
|
parent::DirectProductGroup
|
|||
|
|
|||
|
DirectProductGroupElem{T<:GroupElem}(a::Vector{T}) = new(a)
|
|||
|
end
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# Type and parent object methods
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
elem_type(G::DirectProductGroup) = DirectProductGroupElem
|
|||
|
|
|||
|
parent_type(::Type{DirectProductGroupElem}) = DirectProductGroup
|
|||
|
|
|||
|
parent(g::DirectProductGroupElem) = g.parent
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# DirectProductGroup / DirectProductGroupElem constructors
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
DirectProductGroup(G::Group, H::Group) = DirectProductGroup([G, H], Function[(*),(*)])
|
|||
|
|
|||
|
DirectProductGroup(G::Group, H::Ring) = DirectProductGroup([G, H], Function[(*),(+)])
|
|||
|
|
|||
|
DirectProductGroup(G::Ring, H::Group) = DirectProductGroup([G, H], Function[(+),(*)])
|
|||
|
|
|||
|
DirectProductGroup(G::Ring, H::Ring) = DirectProductGroup([G, H], Function[(+),(+)])
|
|||
|
|
|||
|
DirectProductGroup{T<:Ring}(X::Vector{T}) = DirectProductGroup(Group[X...], Function[(+) for _ in X])
|
|||
|
|
|||
|
×(G::Group, H::Group) = DirectProductGroup(G,H)
|
|||
|
|
|||
|
function DirectProductGroup{T<:Group, S<:Group}(G::Tuple{T, Function}, H::Tuple{S, Function})
|
|||
|
return DirectProductGroup([G[1], H[1]], Function[G[2],H[2]])
|
|||
|
end
|
|||
|
|
|||
|
function DirectProductGroup(groups::Vector)
|
|||
|
for G in groups
|
|||
|
typeof(G) <: Group || throw("$G is not a group!")
|
|||
|
end
|
|||
|
ops = Function[typeof(G) <: Ring ? (+) : (*) for G in groups]
|
|||
|
|
|||
|
return DirectProductGroup(groups, ops)
|
|||
|
end
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# Parent object call overloads
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
(G::DirectProductGroup)() = G([H() for H in G.factors]; checked=false)
|
|||
|
|
|||
|
function (G::DirectProductGroup)(g::DirectProductGroupElem; checked=true)
|
|||
|
if checked
|
|||
|
return G(g.elts)
|
|||
|
else
|
|||
|
g.parent = G
|
|||
|
return g
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
doc"""
|
|||
|
(G::DirectProductGroup)(a::Vector; checked=true)
|
|||
|
> Constructs element of the direct product group `G` by coercing each element
|
|||
|
> of vector `a` to the corresponding factor of `G`. If `checked` flag is set to
|
|||
|
> `false` no checks on the correctness are performed.
|
|||
|
|
|||
|
"""
|
|||
|
function (G::DirectProductGroup)(a::Vector; checked=true)
|
|||
|
length(a) == length(G.factors) || throw("Cannot coerce $a to $G: they have
|
|||
|
different number of factors")
|
|||
|
if checked
|
|||
|
for (F,g) in zip(G.factors, a)
|
|||
|
try
|
|||
|
F(g)
|
|||
|
catch
|
|||
|
throw("Cannot coerce to $G: $g cannot be coerced to $F.")
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
elt = DirectProductGroupElem([F(g) for (F,g) in zip(G.factors, a)])
|
|||
|
elt.parent = G
|
|||
|
return elt
|
|||
|
end
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# Basic manipulation
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
function deepcopy_internal(g::DirectProductGroupElem, dict::ObjectIdDict)
|
|||
|
G = parent(g)
|
|||
|
return G(deepcopy(g.elts))
|
|||
|
end
|
|||
|
|
|||
|
function hash(G::DirectProductGroup, h::UInt)
|
|||
|
return hash(G.factors, hash(G.operations, hash(DirectProductGroup,h)))
|
|||
|
end
|
|||
|
|
|||
|
function hash(g::DirectProductGroupElem, h::UInt)
|
|||
|
return hash(g.elts, hash(g.parent, hash(DirectProductGroupElem, h)))
|
|||
|
end
|
|||
|
|
|||
|
doc"""
|
|||
|
eye(G::DirectProductGroup)
|
|||
|
> Return the identity element for the given direct product of groups.
|
|||
|
|
|||
|
"""
|
|||
|
eye(G::DirectProductGroup) = G()
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# String I/O
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
function show(io::IO, G::DirectProductGroup)
|
|||
|
println(io, "Direct product of groups")
|
|||
|
join(io, G.factors, ", ", " and ")
|
|||
|
end
|
|||
|
|
|||
|
function show(io::IO, g::DirectProductGroupElem)
|
|||
|
print(io, "("*join(g.elts,",")*")")
|
|||
|
end
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# Comparison
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
function (==)(G::DirectProductGroup, H::DirectProductGroup)
|
|||
|
G.factors == H.factors || return false
|
|||
|
G.operations == H.operations || return false
|
|||
|
return true
|
|||
|
end
|
|||
|
|
|||
|
doc"""
|
|||
|
==(g::DirectProductGroupElem, h::DirectProductGroupElem)
|
|||
|
> Return `true` if the given elements of direct products are equal, otherwise return `false`.
|
|||
|
|
|||
|
"""
|
|||
|
function (==)(g::DirectProductGroupElem, h::DirectProductGroupElem)
|
|||
|
parent(g) == parent(h) || return false
|
|||
|
g.elts == h.elts || return false
|
|||
|
return true
|
|||
|
end
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# Binary operators
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
function direct_mult(g::DirectProductGroupElem, h::DirectProductGroupElem)
|
|||
|
parent(g) == parent(h) || throw("Can't multiply elements from different groups: $g, $h")
|
|||
|
G = parent(g)
|
|||
|
return G([op(a,b) for (op,a,b) in zip(G.operations, g.elts, h.elts)])
|
|||
|
end
|
|||
|
|
|||
|
doc"""
|
|||
|
*(g::DirectProductGroupElem, h::DirectProductGroupElem)
|
|||
|
> Return the direct-product group operation of elements, i.e. component-wise
|
|||
|
> operation as defined by `operations` field of the parent object.
|
|||
|
|
|||
|
"""
|
|||
|
(*)(g::DirectProductGroupElem, h::DirectProductGroupElem) = direct_mult(g,h)
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# Inversion
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
doc"""
|
|||
|
inv(g::DirectProductGroupElem)
|
|||
|
> Return the inverse of the given element in the direct product group.
|
|||
|
|
|||
|
"""
|
|||
|
# TODO: dirty hack around `+` operation
|
|||
|
function inv(g::DirectProductGroupElem)
|
|||
|
G = parent(g)
|
|||
|
return G([(op == (*) ? inv(elt): -elt) for (op,elt) in zip(G.operations, g.elts)])
|
|||
|
end
|
|||
|
|
|||
|
###############################################################################
|
|||
|
#
|
|||
|
# Misc
|
|||
|
#
|
|||
|
###############################################################################
|
|||
|
|
|||
|
doc"""
|
|||
|
elements(G::DirectProductGroup)
|
|||
|
> Returns `Task` that produces all elements of group `G` (provided that factors
|
|||
|
> implement the elements function).
|
|||
|
|
|||
|
"""
|
|||
|
# TODO: can Base.product handle generators?
|
|||
|
# now it returns nothing's so we have to collect ellements...
|
|||
|
function elements(G::DirectProductGroup)
|
|||
|
cartesian_prod = Base.product([collect(elements(H)) for H in G.factors]...)
|
|||
|
return (G(collect(elt)) for elt in cartesian_prod)
|
|||
|
end
|
|||
|
|
|||
|
doc"""
|
|||
|
order(G::DirectProductGroup)
|
|||
|
> Returns the order (number of elements) in the group.
|
|||
|
|
|||
|
"""
|
|||
|
order(G::DirectProductGroup) = prod([order(H) for H in G.factors])
|
|||
|
|
|||
|
end # of module DirectProduct
|