184 lines
5.2 KiB
Julia
184 lines
5.2 KiB
Julia
|
using JLD
|
|||
|
using JuMP
|
|||
|
import SCS: SCSSolver
|
|||
|
import Mosek: MosekSolver
|
|||
|
|
|||
|
using Groups
|
|||
|
using ProgressMeter
|
|||
|
|
|||
|
#=
|
|||
|
Note that the element
|
|||
|
α(i,j,k) = ϱ(i,j)*ϱ(i,k)*inv(ϱ(i,j))*inv(ϱ(i,k)),
|
|||
|
which surely belongs to ball of radius 4 in Aut(F₄) becomes trivial under the representation
|
|||
|
Aut(F₄) → GL₄(ℤ)⋉ℤ⁴ → GL₅(ℂ).
|
|||
|
Moreover, due to work of Potapchik and Rapinchuk [1] every real representation of Aut(Fₙ) into GLₘ(ℂ) (for m ≤ 2n-2) factors through GLₙ(ℤ)⋉ℤⁿ, so will have the same problem.
|
|||
|
|
|||
|
We need a different approach: Here we actually compute in Aut(𝔽₄)
|
|||
|
=#
|
|||
|
|
|||
|
import Combinatorics.nthperm
|
|||
|
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
|
|||
|
|
|||
|
function generating_set_of_AutF(N::Int)
|
|||
|
|
|||
|
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
|||
|
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
|||
|
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
|||
|
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
|||
|
ɛs = [flip_AutSymbol(i) for i in 1:N];
|
|||
|
|
|||
|
S = vcat(ϱs,λs)
|
|||
|
S = vcat(S..., σs..., ɛs)
|
|||
|
S = vcat(S..., [inv(g) for g in S])
|
|||
|
return Vector{AutWord}(unique(S))
|
|||
|
end
|
|||
|
|
|||
|
function generating_set_of_OutF(N::Int)
|
|||
|
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
|||
|
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
|||
|
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
|||
|
ɛs = [flip_AutSymbol(i) for i in 1:N];
|
|||
|
|
|||
|
S = ϱs
|
|||
|
push!(S, λs..., ɛs...)
|
|||
|
push!(S,[inv(g) for g in S]...)
|
|||
|
return Vector{AutWord}(unique(S))
|
|||
|
end
|
|||
|
|
|||
|
function generating_set_of_Sym(N::Int)
|
|||
|
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
|||
|
|
|||
|
S = σs
|
|||
|
push!(S, [inv(s) for s in S]...)
|
|||
|
return Vector{AutWord}(unique(S))
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
function products(S1::Vector{AutWord}, S2::Vector{AutWord})
|
|||
|
result = Vector{AutWord}()
|
|||
|
seen = Set{Vector{FGWord}}()
|
|||
|
n = length(S1)
|
|||
|
p = Progress(n, 1, "Computing complete products...", 50)
|
|||
|
for (i,x) in enumerate(S1)
|
|||
|
for y in S2
|
|||
|
z::AutWord = x*y
|
|||
|
v::Vector{FGWord} = z(domain)
|
|||
|
if !in(v, seen)
|
|||
|
push!(seen, v)
|
|||
|
push!(result, z)
|
|||
|
end
|
|||
|
end
|
|||
|
next!(p)
|
|||
|
end
|
|||
|
return result
|
|||
|
end
|
|||
|
|
|||
|
function products_images(S1::Vector{AutWord}, S2::Vector{AutWord})
|
|||
|
result = Vector{Vector{FGWord}}()
|
|||
|
seen = Set{Vector{FGWord}}()
|
|||
|
n = length(S1)
|
|||
|
|
|||
|
p = Progress(n, 1, "Computing images of elts in B₄...", 50)
|
|||
|
for (i,x) in enumerate(S1)
|
|||
|
z = x(domain)
|
|||
|
for y in S2
|
|||
|
v = y(z)
|
|||
|
if !in(v, seen)
|
|||
|
push!(seen, v)
|
|||
|
push!(result, v)
|
|||
|
end
|
|||
|
end
|
|||
|
next!(p)
|
|||
|
end
|
|||
|
return result
|
|||
|
end
|
|||
|
|
|||
|
function hashed_product{T}(image::T, B, images_dict::Dict{T, Int})
|
|||
|
n = size(B,1)
|
|||
|
column = zeros(Int,n)
|
|||
|
Threads.@threads for j in 1:n
|
|||
|
w = (B[j])(image)
|
|||
|
k = images_dict[w]
|
|||
|
k ≠ 0 || throw(ArgumentError(
|
|||
|
"($i,$j): $(x^-1)*$y don't seem to be supported on basis!"))
|
|||
|
column[j] = k
|
|||
|
end
|
|||
|
return column
|
|||
|
end
|
|||
|
|
|||
|
function create_product_matrix(basis::Vector{AutWord}, images)
|
|||
|
n = length(basis)
|
|||
|
product_matrix = zeros(Int, (n, n));
|
|||
|
print("Creating hashtable of images...")
|
|||
|
@time images_dict = Dict{Vector{FGWord}, Int}(x => i
|
|||
|
for (i,x) in enumerate(images))
|
|||
|
|
|||
|
p = Progress(n, 1, "Computing product matrix in basis...", 50)
|
|||
|
for i in 1:n
|
|||
|
z = (inv(basis[i]))(domain)
|
|||
|
product_matrix[i,:] = hashed_product(z, basis, images_dict)
|
|||
|
next!(p)
|
|||
|
end
|
|||
|
return product_matrix
|
|||
|
end
|
|||
|
|
|||
|
function ΔandSDPconstraints(identity::AutWord, S::Vector{AutWord})
|
|||
|
|
|||
|
println("Generating Balls of increasing radius...")
|
|||
|
@time B₁ = vcat([identity], S)
|
|||
|
@time B₂ = products(B₁,B₁);
|
|||
|
@show length(B₂)
|
|||
|
if length(B₂) != length(B₁)
|
|||
|
@time B₃ = products(B₁, B₂)
|
|||
|
@show length(B₃)
|
|||
|
if length(B₃) != length(B₂)
|
|||
|
@time B₄_images = products_images(B₁, B₃)
|
|||
|
else
|
|||
|
B₄_images = unique([f(domain) for f in B₃])
|
|||
|
end
|
|||
|
else
|
|||
|
B₃ = B₂
|
|||
|
B₄ = B₂
|
|||
|
B₄_images = unique([f(domain) for f in B₃])
|
|||
|
end
|
|||
|
|
|||
|
@show length(B₄_images)
|
|||
|
# @assert length(B₄_images) == 3425657
|
|||
|
|
|||
|
println("Creating product matrix...")
|
|||
|
@time pm = create_product_matrix(B₂, B₄_images)
|
|||
|
println("Creating sdp_constratints...")
|
|||
|
@time sdp_constraints = constraints_from_pm(pm)
|
|||
|
|
|||
|
L_coeff = splaplacian_coeff(S, B₂, length(B₄_images))
|
|||
|
Δ = GroupAlgebraElement(L_coeff, Array{Int,2}(pm))
|
|||
|
|
|||
|
return Δ, sdp_constraints
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
@everywhere push!(LOAD_PATH, "./")
|
|||
|
using GroupAlgebras
|
|||
|
include("property(T).jl")
|
|||
|
|
|||
|
const symbols = [FGSymbol("x₁",1), FGSymbol("x₂",1), FGSymbol("x₃",1), FGSymbol("x₄",1), FGSymbol("x₅",1), FGSymbol("x₆",1)]
|
|||
|
|
|||
|
const TOL=1e-8
|
|||
|
const N = 4
|
|||
|
const domain = Vector{FGWord}(symbols[1:N])
|
|||
|
const ID = one(AutWord)
|
|||
|
|
|||
|
# const name = "SYM$N"
|
|||
|
# const upper_bound=factorial(N)-TOL^(1/5)
|
|||
|
# S() = generating_set_of_Sym(N)
|
|||
|
|
|||
|
# name = "AutF$N"
|
|||
|
# S() = generating_set_of_AutF(N)
|
|||
|
|
|||
|
name = "OutF$N"
|
|||
|
S() = generating_set_of_OutF(N)
|
|||
|
const upper_bound=0.05
|
|||
|
|
|||
|
BLAS.set_num_threads(4)
|
|||
|
@time check_property_T(name, ID, S; verbose=true, tol=TOL, upper_bound=upper_bound)
|