update groups to the new input format
This commit is contained in:
parent
df4b63a6a6
commit
0a0856bb51
@ -1,20 +1,19 @@
|
||||
struct SpecialAutomorphismGroup <: SymmetrizedGroup
|
||||
args::Dict{String,Any}
|
||||
group::AutGroup
|
||||
N::Int
|
||||
|
||||
function SpecialAutomorphismGroup(args::Dict)
|
||||
N = args["N"]
|
||||
return new(args, AutGroup(FreeGroup(N), special=true))
|
||||
N = args["SAut"]
|
||||
return new(args, AutGroup(FreeGroup(N), special=true), N)
|
||||
end
|
||||
end
|
||||
|
||||
function name(G::SpecialAutomorphismGroup)
|
||||
N = G.args["N"]
|
||||
|
||||
if G.args["nosymmetry"]
|
||||
return "SAutF$(N)"
|
||||
return "SAutF$(G.N)"
|
||||
else
|
||||
return "oSAutF$(N)"
|
||||
return "oSAutF$(G.N)"
|
||||
end
|
||||
end
|
||||
|
||||
@ -26,8 +25,7 @@ function generatingset(G::SpecialAutomorphismGroup)
|
||||
end
|
||||
|
||||
function autS(G::SpecialAutomorphismGroup)
|
||||
N = G.args["N"]
|
||||
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
||||
return WreathProduct(PermutationGroup(2), PermutationGroup(G.N))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
|
@ -1,26 +1,26 @@
|
||||
struct MappingClassGroup <: GAPGroup
|
||||
args::Dict{String,Any}
|
||||
N::Int
|
||||
|
||||
MappingClassGroup(args) = MappingClassGroup(args, G.args["MCG"])
|
||||
end
|
||||
|
||||
function name(G::MappingClassGroup)
|
||||
N = G.args["MCG"]
|
||||
return "MCG($(N))"
|
||||
end
|
||||
name(G::MappingClassGroup) = "MCG($(G.N))"
|
||||
|
||||
function group(G::MappingClassGroup)
|
||||
N = G.args["MCG"]
|
||||
if N < 2
|
||||
|
||||
if G.N < 2
|
||||
throw("Genus must be at least 2!")
|
||||
elseif N == 2
|
||||
elseif G.N == 2
|
||||
MCGroup = Groups.FPGroup(["a1","a2","a3","a4","a5"]);
|
||||
S = gens(MCGroup)
|
||||
|
||||
N = length(S)
|
||||
n = length(S)
|
||||
A = prod(reverse(S))*prod(S)
|
||||
|
||||
relations = [
|
||||
[Comm(S[i], S[j]) for i in 1:N for j in 1:N if abs(i-j) > 1]...,
|
||||
[S[i]*S[i+1]*S[i]*inv(S[i+1]*S[i]*S[i+1]) for i in 1:N-1]...,
|
||||
[Comm(S[i], S[j]) for i in 1:n for j in 1:n if abs(i-j) > 1]...,
|
||||
[S[i]*S[i+1]*S[i]*inv(S[i+1]*S[i]*S[i+1]) for i in 1:G.n-1]...,
|
||||
(S[1]*S[2]*S[3])^4*inv(S[5])^2,
|
||||
Comm(A, S[1]),
|
||||
A^2
|
||||
@ -31,7 +31,7 @@ function group(G::MappingClassGroup)
|
||||
return MCGroup
|
||||
|
||||
else
|
||||
MCGroup = Groups.FPGroup(["a$i" for i in 0:2N])
|
||||
MCGroup = Groups.FPGroup(["a$i" for i in 0:2G.N])
|
||||
S = gens(MCGroup)
|
||||
|
||||
a0 = S[1]
|
||||
@ -76,7 +76,7 @@ function group(G::MappingClassGroup)
|
||||
(A[2i+3]*A[2i+2]*A[2i+4]*A[2i+3])*( n(i+1)*A[2i+2]*A[2i+1]*A[2i] )
|
||||
end
|
||||
|
||||
# push!(relations, X*n(N)*inv(n(N)*X))
|
||||
# push!(relations, X*n(G.N)*inv(n(G.N)*X))
|
||||
|
||||
relations = [relations; [inv(rel) for rel in relations]]
|
||||
Groups.add_rels!(MCGroup, Dict(rel => MCGroup() for rel in relations))
|
||||
|
@ -1,9 +1,10 @@
|
||||
struct SpecialLinearGroup <: SymmetrizedGroup
|
||||
args::Dict{String,Any}
|
||||
group::AbstractAlgebra.Group
|
||||
N::Int
|
||||
|
||||
function SpecialLinearGroup(args::Dict)
|
||||
n = args["N"]
|
||||
n = args["SL"]
|
||||
p = args["p"]
|
||||
X = args["X"]
|
||||
|
||||
@ -13,12 +14,11 @@ struct SpecialLinearGroup <: SymmetrizedGroup
|
||||
R = Nemo.NmodRing(UInt(p))
|
||||
G = MatrixSpace(R, n, n)
|
||||
end
|
||||
return new(args, G)
|
||||
return new(args, G, n)
|
||||
end
|
||||
end
|
||||
|
||||
function name(G::SpecialLinearGroup)
|
||||
N = G.args["N"]
|
||||
p = G.args["p"]
|
||||
X = G.args["X"]
|
||||
|
||||
@ -28,9 +28,9 @@ function name(G::SpecialLinearGroup)
|
||||
R = "F$p"
|
||||
end
|
||||
if G.args["nosymmetry"]
|
||||
return "SL($N,$R)"
|
||||
return "SL($(G.N),$R)"
|
||||
else
|
||||
return "oSL($N,$R)"
|
||||
return "oSL($(G.N),$R)"
|
||||
end
|
||||
end
|
||||
|
||||
@ -44,7 +44,6 @@ function E(i::Int, j::Int, M::MatSpace, val=one(M.base_ring))
|
||||
end
|
||||
|
||||
function generatingset(G::SpecialLinearGroup)
|
||||
n = G.args["N"]
|
||||
p = G.args["p"]
|
||||
X = G.args["X"]
|
||||
p > 0 && X && throw("SL(n, F_p[x]) not implemented")
|
||||
@ -68,8 +67,7 @@ function generatingset(SL::MatSpace, radius::Integer, X::Bool=false)
|
||||
end
|
||||
|
||||
function autS(G::SpecialLinearGroup)
|
||||
N = G.args["N"]
|
||||
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
||||
return WreathProduct(PermutationGroup(2), PermutationGroup(G.N))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
|
Loading…
Reference in New Issue
Block a user