update groups to the new input format
This commit is contained in:
parent
df4b63a6a6
commit
0a0856bb51
@ -1,20 +1,19 @@
|
|||||||
struct SpecialAutomorphismGroup <: SymmetrizedGroup
|
struct SpecialAutomorphismGroup <: SymmetrizedGroup
|
||||||
args::Dict{String,Any}
|
args::Dict{String,Any}
|
||||||
group::AutGroup
|
group::AutGroup
|
||||||
|
N::Int
|
||||||
|
|
||||||
function SpecialAutomorphismGroup(args::Dict)
|
function SpecialAutomorphismGroup(args::Dict)
|
||||||
N = args["N"]
|
N = args["SAut"]
|
||||||
return new(args, AutGroup(FreeGroup(N), special=true))
|
return new(args, AutGroup(FreeGroup(N), special=true), N)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function name(G::SpecialAutomorphismGroup)
|
function name(G::SpecialAutomorphismGroup)
|
||||||
N = G.args["N"]
|
|
||||||
|
|
||||||
if G.args["nosymmetry"]
|
if G.args["nosymmetry"]
|
||||||
return "SAutF$(N)"
|
return "SAutF$(G.N)"
|
||||||
else
|
else
|
||||||
return "oSAutF$(N)"
|
return "oSAutF$(G.N)"
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -26,8 +25,7 @@ function generatingset(G::SpecialAutomorphismGroup)
|
|||||||
end
|
end
|
||||||
|
|
||||||
function autS(G::SpecialAutomorphismGroup)
|
function autS(G::SpecialAutomorphismGroup)
|
||||||
N = G.args["N"]
|
return WreathProduct(PermutationGroup(2), PermutationGroup(G.N))
|
||||||
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
|
||||||
end
|
end
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
@ -1,26 +1,26 @@
|
|||||||
struct MappingClassGroup <: GAPGroup
|
struct MappingClassGroup <: GAPGroup
|
||||||
args::Dict{String,Any}
|
args::Dict{String,Any}
|
||||||
|
N::Int
|
||||||
|
|
||||||
|
MappingClassGroup(args) = MappingClassGroup(args, G.args["MCG"])
|
||||||
end
|
end
|
||||||
|
|
||||||
function name(G::MappingClassGroup)
|
name(G::MappingClassGroup) = "MCG($(G.N))"
|
||||||
N = G.args["MCG"]
|
|
||||||
return "MCG($(N))"
|
|
||||||
end
|
|
||||||
|
|
||||||
function group(G::MappingClassGroup)
|
function group(G::MappingClassGroup)
|
||||||
N = G.args["MCG"]
|
|
||||||
if N < 2
|
if G.N < 2
|
||||||
throw("Genus must be at least 2!")
|
throw("Genus must be at least 2!")
|
||||||
elseif N == 2
|
elseif G.N == 2
|
||||||
MCGroup = Groups.FPGroup(["a1","a2","a3","a4","a5"]);
|
MCGroup = Groups.FPGroup(["a1","a2","a3","a4","a5"]);
|
||||||
S = gens(MCGroup)
|
S = gens(MCGroup)
|
||||||
|
|
||||||
N = length(S)
|
n = length(S)
|
||||||
A = prod(reverse(S))*prod(S)
|
A = prod(reverse(S))*prod(S)
|
||||||
|
|
||||||
relations = [
|
relations = [
|
||||||
[Comm(S[i], S[j]) for i in 1:N for j in 1:N if abs(i-j) > 1]...,
|
[Comm(S[i], S[j]) for i in 1:n for j in 1:n if abs(i-j) > 1]...,
|
||||||
[S[i]*S[i+1]*S[i]*inv(S[i+1]*S[i]*S[i+1]) for i in 1:N-1]...,
|
[S[i]*S[i+1]*S[i]*inv(S[i+1]*S[i]*S[i+1]) for i in 1:G.n-1]...,
|
||||||
(S[1]*S[2]*S[3])^4*inv(S[5])^2,
|
(S[1]*S[2]*S[3])^4*inv(S[5])^2,
|
||||||
Comm(A, S[1]),
|
Comm(A, S[1]),
|
||||||
A^2
|
A^2
|
||||||
@ -31,7 +31,7 @@ function group(G::MappingClassGroup)
|
|||||||
return MCGroup
|
return MCGroup
|
||||||
|
|
||||||
else
|
else
|
||||||
MCGroup = Groups.FPGroup(["a$i" for i in 0:2N])
|
MCGroup = Groups.FPGroup(["a$i" for i in 0:2G.N])
|
||||||
S = gens(MCGroup)
|
S = gens(MCGroup)
|
||||||
|
|
||||||
a0 = S[1]
|
a0 = S[1]
|
||||||
@ -76,7 +76,7 @@ function group(G::MappingClassGroup)
|
|||||||
(A[2i+3]*A[2i+2]*A[2i+4]*A[2i+3])*( n(i+1)*A[2i+2]*A[2i+1]*A[2i] )
|
(A[2i+3]*A[2i+2]*A[2i+4]*A[2i+3])*( n(i+1)*A[2i+2]*A[2i+1]*A[2i] )
|
||||||
end
|
end
|
||||||
|
|
||||||
# push!(relations, X*n(N)*inv(n(N)*X))
|
# push!(relations, X*n(G.N)*inv(n(G.N)*X))
|
||||||
|
|
||||||
relations = [relations; [inv(rel) for rel in relations]]
|
relations = [relations; [inv(rel) for rel in relations]]
|
||||||
Groups.add_rels!(MCGroup, Dict(rel => MCGroup() for rel in relations))
|
Groups.add_rels!(MCGroup, Dict(rel => MCGroup() for rel in relations))
|
||||||
|
@ -1,9 +1,10 @@
|
|||||||
struct SpecialLinearGroup <: SymmetrizedGroup
|
struct SpecialLinearGroup <: SymmetrizedGroup
|
||||||
args::Dict{String,Any}
|
args::Dict{String,Any}
|
||||||
group::AbstractAlgebra.Group
|
group::AbstractAlgebra.Group
|
||||||
|
N::Int
|
||||||
|
|
||||||
function SpecialLinearGroup(args::Dict)
|
function SpecialLinearGroup(args::Dict)
|
||||||
n = args["N"]
|
n = args["SL"]
|
||||||
p = args["p"]
|
p = args["p"]
|
||||||
X = args["X"]
|
X = args["X"]
|
||||||
|
|
||||||
@ -13,12 +14,11 @@ struct SpecialLinearGroup <: SymmetrizedGroup
|
|||||||
R = Nemo.NmodRing(UInt(p))
|
R = Nemo.NmodRing(UInt(p))
|
||||||
G = MatrixSpace(R, n, n)
|
G = MatrixSpace(R, n, n)
|
||||||
end
|
end
|
||||||
return new(args, G)
|
return new(args, G, n)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function name(G::SpecialLinearGroup)
|
function name(G::SpecialLinearGroup)
|
||||||
N = G.args["N"]
|
|
||||||
p = G.args["p"]
|
p = G.args["p"]
|
||||||
X = G.args["X"]
|
X = G.args["X"]
|
||||||
|
|
||||||
@ -28,9 +28,9 @@ function name(G::SpecialLinearGroup)
|
|||||||
R = "F$p"
|
R = "F$p"
|
||||||
end
|
end
|
||||||
if G.args["nosymmetry"]
|
if G.args["nosymmetry"]
|
||||||
return "SL($N,$R)"
|
return "SL($(G.N),$R)"
|
||||||
else
|
else
|
||||||
return "oSL($N,$R)"
|
return "oSL($(G.N),$R)"
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -44,7 +44,6 @@ function E(i::Int, j::Int, M::MatSpace, val=one(M.base_ring))
|
|||||||
end
|
end
|
||||||
|
|
||||||
function generatingset(G::SpecialLinearGroup)
|
function generatingset(G::SpecialLinearGroup)
|
||||||
n = G.args["N"]
|
|
||||||
p = G.args["p"]
|
p = G.args["p"]
|
||||||
X = G.args["X"]
|
X = G.args["X"]
|
||||||
p > 0 && X && throw("SL(n, F_p[x]) not implemented")
|
p > 0 && X && throw("SL(n, F_p[x]) not implemented")
|
||||||
@ -68,8 +67,7 @@ function generatingset(SL::MatSpace, radius::Integer, X::Bool=false)
|
|||||||
end
|
end
|
||||||
|
|
||||||
function autS(G::SpecialLinearGroup)
|
function autS(G::SpecialLinearGroup)
|
||||||
N = G.args["N"]
|
return WreathProduct(PermutationGroup(2), PermutationGroup(G.N))
|
||||||
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
|
||||||
end
|
end
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
Loading…
Reference in New Issue
Block a user