parametrize PropertyTGroups types by N
This commit is contained in:
parent
8a2aa6542e
commit
1b6793f37c
@ -1,21 +1,12 @@
|
||||
struct SpecialAutomorphismGroup <: SymmetrizedGroup
|
||||
args::Dict{String,Any}
|
||||
struct SpecialAutomorphismGroup{N} <: SymmetrizedGroup
|
||||
group::AutGroup
|
||||
N::Int
|
||||
|
||||
function SpecialAutomorphismGroup(args::Dict)
|
||||
N = args["SAut"]
|
||||
return new(args, AutGroup(FreeGroup(N), special=true), N)
|
||||
return new{args["SAut"]}(AutGroup(FreeGroup(N), special=true))
|
||||
end
|
||||
end
|
||||
|
||||
function name(G::SpecialAutomorphismGroup)
|
||||
if haskey(G.args, "nosymmetry") && G.args["nosymmetry"]
|
||||
return "SAutF$(G.N)"
|
||||
else
|
||||
return "oSAutF$(G.N)"
|
||||
end
|
||||
end
|
||||
name(G::SpecialAutomorphismGroup{N}) where N = "SAutF$(N)"
|
||||
|
||||
group(G::SpecialAutomorphismGroup) = G.group
|
||||
|
||||
@ -24,8 +15,8 @@ function generatingset(G::SpecialAutomorphismGroup)
|
||||
return unique([S; inv.(S)])
|
||||
end
|
||||
|
||||
function autS(G::SpecialAutomorphismGroup)
|
||||
return WreathProduct(PermutationGroup(2), PermutationGroup(G.N))
|
||||
function autS(G::SpecialAutomorphismGroup{N}) where N
|
||||
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
|
@ -1,17 +1,14 @@
|
||||
struct MappingClassGroup <: GAPGroup
|
||||
args::Dict{String,Any}
|
||||
N::Int
|
||||
struct MappingClassGroup{N} <: GAPGroup end
|
||||
|
||||
MappingClassGroup(args) = new(args, args["MCG"])
|
||||
end
|
||||
MappingClassGroup(args::Dict) = MappingClassGroup{args["MCG"]}()
|
||||
|
||||
name(G::MappingClassGroup) = "MCG($(G.N))"
|
||||
name(G::MappingClassGroup{N}) where N = "MCG(N)"
|
||||
|
||||
function group(G::MappingClassGroup)
|
||||
function group(G::MappingClassGroup{N}) where N
|
||||
|
||||
if G.N < 2
|
||||
if N < 2
|
||||
throw("Genus must be at least 2!")
|
||||
elseif G.N == 2
|
||||
elseif N == 2
|
||||
MCGroup = Groups.FPGroup(["a1","a2","a3","a4","a5"]);
|
||||
S = gens(MCGroup)
|
||||
|
||||
@ -31,7 +28,7 @@ function group(G::MappingClassGroup)
|
||||
return MCGroup
|
||||
|
||||
else
|
||||
MCGroup = Groups.FPGroup(["a$i" for i in 0:2G.N])
|
||||
MCGroup = Groups.FPGroup(["a$i" for i in 0:2N])
|
||||
S = gens(MCGroup)
|
||||
|
||||
a0 = S[1]
|
||||
@ -76,7 +73,7 @@ function group(G::MappingClassGroup)
|
||||
(A[2i+3]*A[2i+2]*A[2i+4]*A[2i+3])*( n(i+1)*A[2i+2]*A[2i+1]*A[2i] )
|
||||
end
|
||||
|
||||
# push!(relations, X*n(G.N)*inv(n(G.N)*X))
|
||||
# push!(relations, X*n(N)*inv(n(N)*X))
|
||||
|
||||
relations = [relations; [inv(rel) for rel in relations]]
|
||||
Groups.add_rels!(MCGroup, Dict(rel => MCGroup() for rel in relations))
|
||||
|
@ -1,60 +1,44 @@
|
||||
struct SpecialLinearGroup <: SymmetrizedGroup
|
||||
args::Dict{String,Any}
|
||||
struct SpecialLinearGroup{N} <: SymmetrizedGroup
|
||||
group::AbstractAlgebra.Group
|
||||
N::Int
|
||||
p::Int
|
||||
X::Bool
|
||||
|
||||
function SpecialLinearGroup(args::Dict)
|
||||
n = args["SL"]
|
||||
N = args["SL"]
|
||||
p = args["p"]
|
||||
X = args["X"]
|
||||
|
||||
if p == 0
|
||||
G = MatrixSpace(Nemo.ZZ, n, n)
|
||||
G = MatrixSpace(Nemo.ZZ, N, N)
|
||||
else
|
||||
R = Nemo.NmodRing(UInt(p))
|
||||
G = MatrixSpace(R, n, n)
|
||||
G = MatrixSpace(R, N, N)
|
||||
end
|
||||
return new(args, G, n)
|
||||
return new{N}(G, p, X)
|
||||
end
|
||||
end
|
||||
|
||||
function name(G::SpecialLinearGroup)
|
||||
p = G.args["p"]
|
||||
X = G.args["X"]
|
||||
|
||||
if p == 0
|
||||
R = (X ? "Z[x]" : "Z")
|
||||
function name(G::SpecialLinearGroup{N}) where N
|
||||
if G.p == 0
|
||||
R = (G.X ? "Z[x]" : "Z")
|
||||
else
|
||||
R = "F$p"
|
||||
end
|
||||
if haskey(G.args, "nosymmetry") && G.args["nosymmetry"]
|
||||
return "SL($(G.N),$R)"
|
||||
else
|
||||
return "oSL($(G.N),$R)"
|
||||
R = "F$(G.p)"
|
||||
end
|
||||
return SL($(G.N),$R)
|
||||
end
|
||||
|
||||
group(G::SpecialLinearGroup) = G.group
|
||||
|
||||
function E(i::Int, j::Int, M::MatSpace, val=one(M.base_ring))
|
||||
@assert i≠j
|
||||
m = one(M)
|
||||
m[i,j] = val
|
||||
return m
|
||||
end
|
||||
|
||||
function generatingset(G::SpecialLinearGroup)
|
||||
p = G.args["p"]
|
||||
X = G.args["X"]
|
||||
p > 0 && X && throw("SL(n, F_p[x]) not implemented")
|
||||
function generatingset(G::SpecialLinearGroup{N}) where N
|
||||
G.p > 0 && G.X && throw("SL(n, F_p[x]) not implemented")
|
||||
SL = group(G)
|
||||
r = G.args["radius"]
|
||||
return generatingset(SL, r, X)
|
||||
return generatingset(SL, G.X)
|
||||
end
|
||||
|
||||
# r is the injectivity radius of
|
||||
# SL(n, Z[X]) -> SL(n, Z) induced by X -> 100
|
||||
|
||||
function generatingset(SL::MatSpace, radius::Integer, X::Bool=false)
|
||||
|
||||
function generatingset(SL::MatSpace, X::Bool=false, r=5)
|
||||
n = SL.cols
|
||||
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||
|
||||
@ -66,8 +50,15 @@ function generatingset(SL::MatSpace, radius::Integer, X::Bool=false)
|
||||
return unique([S; inv.(S)])
|
||||
end
|
||||
|
||||
function autS(G::SpecialLinearGroup)
|
||||
return WreathProduct(PermutationGroup(2), PermutationGroup(G.N))
|
||||
function E(i::Int, j::Int, M::MatSpace, val=one(M.base_ring))
|
||||
@assert i≠j
|
||||
m = one(M)
|
||||
m[i,j] = val
|
||||
return m
|
||||
end
|
||||
|
||||
function autS(G::SpecialLinearGroup{N}) where N
|
||||
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
|
Loading…
Reference in New Issue
Block a user