use ArgParse for command line interface

This commit is contained in:
kalmar 2017-03-16 18:13:55 +01:00
parent 969121e8f5
commit 3ec3b553e8

112
SL.jl
View File

@ -1,6 +1,11 @@
import Primes: isprime
using ArgParse
using GroupAlgebras
using PropertyT
using Mods
import Primes: isprime
import SCS.SCSSolver
function SL_generatingset(n::Int)
@ -72,14 +77,14 @@ function inv(M::Array{Mod,2})
end
function SL_generatingset(n::Int, p::Int)
(p > 1 && n > 1) || throw(ArgumentError("Both n and p should be integers!"))
p == 0 && return SL_generatingset(n)
(p > 1 && n > 0) || throw(ArgumentError("Both n and p should be positive integers!"))
isprime(p) || throw(ArgumentError("p should be a prime number!"))
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
S = [E(i,j, N=n, mod=p) for (i,j) in indexing]
S = vcat(S, [inv(s) for s in S])
S = vcat(S, [permutedims(x, [2,1]) for x in S]);
return unique(S)
end
@ -108,6 +113,12 @@ function ΔandSDPconstraints{T<:Number}(identity::Array{T,2}, S::Vector{Array{T,
return Δ, sdp_constraints
end
ID(n::Int) = eye(Int, n)
function ID(n::Int, p::Int)
p==0 && return ID(n)
return [Mod(x,p) for x in eye(Int,N)]
end
#=
@ -118,24 +129,89 @@ function ΔandSDPconstraints(identity, S):: (Δ, sdp_constraints)
=#
using GroupAlgebras
using PropertyT
function cpuinfo_physicalcores()
maxcore = -1
for line in eachline("/proc/cpuinfo")
if startswith(line, "core id")
maxcore = max(maxcore, parse(Int, split(line, ':')[2]))
end
end
maxcore < 0 && error("failure to read core ids from /proc/cpuinfo")
return maxcore + 1
end
const N = 3
function parse_commandline()
s = ArgParseSettings()
# const name = "SL$(N)Z"
const name = "SL3Z-0.279"
const ID = eye(Int, N)
S() = SL_generatingset(N)
const upper_bound=0.27
@add_arg_table s begin
"--tol"
help = "set numerical tolerance for the SDP solver"
arg_type = Float64
default = 1e-9
"--iterations"
help = "set maximal number of iterations for the SDP solver"
arg_type = Int
default = 100000
"--upper-bound"
help = "Set an upper bound for the spectral gap"
arg_type = Float64
default = Inf
"--cpus"
help = "Set number of cpus used by solver"
arg_type = Int
required = false
"-N"
help = "Consider matrices of size N"
arg_type = Int
default = 3
"-p"
help = "Matrices over filed of p-elements (0 = over ZZ)"
arg_type = Int
default = 0
end
return parse_args(s)
end
# const p = 7
# const upper_bound=0.738 # (N,p) = (3,7)
function main()
parsed_args = parse_commandline()
println("Parsed args:")
# const name = "SL($N,$p)"
# const ID = [Mod(x,p) for x in eye(Int,N)]
# S() = SL_generatingset(N, p)
# SL(3,Z)
# upper_bound = 0.28-1e-5
# tol = 1e-12
# iterations = 500000
BLAS.set_num_threads(4)
@time PropertyT.check_property_T(name, ID, S; verbose=true, tol=1e-8, upper_bound=upper_bound)
# SL(4,Z)
# upper_bound = 1.31
# tol = 3e-11
# upper_bound=0.738 # (N,p) = (3,7)
tol = parsed_args["tol"]
iterations = parsed_args["iterations"]
# solver = MosekSolver(INTPNT_CO_TOL_REL_GAP=tol, QUIET=false)
solver = SCSSolver(eps=tol, max_iters=iterations, verbose=true)
N = parsed_args["N"]
upper_bound = parsed_args["upper-bound"]
p = parsed_args["p"]
if p == 0
name = "SL$(N)Z"
else
name = "SL$(N)_p"
end
S() = SL_generatingset(N, p)
if parsed_args["cpus"] nothing
if parsed_args["cpus"] > cpuinfo_physicalcores()
warn("Number of specified cores exceeds the physical core cound. Performance will suffer.")
end
Blas.set_num_threads(parsed_args["cpus"])
end
@time PropertyT.check_property_T(name, ID(N,p), S, solver, upper_bound, tol)
end
main()