add WreathProducts

This commit is contained in:
kalmar 2017-06-06 12:05:28 +02:00
parent 3050446a97
commit 5311680a26

236
WreathProducts.jl Normal file
View File

@ -0,0 +1,236 @@
module WreathProducts
using Nemo
using DirectProducts
import Base: convert, deepcopy_internal, show, isequal, ==, hash, size, inv
import Base: +, -, *, //
import Nemo: Group, GroupElem, elem_type, parent_type, parent, elements, order
###############################################################################
#
# WreathProduct / WreathProductElem
#
###############################################################################
doc"""
WreathProduct <: Group
> Implements Wreath product of a group N by permutation (sub)group P < Sₖ,
> usually written as $N \wr P$.
> The multiplication inside wreath product is defined as
> (n, σ) * (m, τ) = (n*ψ(σ)(m), σ*τ),
> where ψ:P Aut(Nᵏ) is the permutation representation of Sₖ restricted to P.
# Arguments:
* `::Group` : the single factor of group N
* `::PermutationGroup` : full PermutationGroup
"""
type WreathProduct <: Group
N::DirectProductGroup
P::PermutationGroup
function WreathProduct(G::Group, P::PermutationGroup)
N = DirectProductGroup(typeof(G)[G for _ in 1:P.n])
return new(N, P)
end
end
type WreathProductElem <: GroupElem
n::DirectProductGroupElem
p::perm
parent::WreathProduct
function WreathProductElem(n::DirectProductGroupElem, p::perm)
length(n.elts) == parent(p).n
return new(n, p)
end
end
export WreathProduct, WreathProductElem
###############################################################################
#
# Type and parent object methods
#
###############################################################################
elem_type(::WreathProduct) = WreathProductElem
parent_type(::WreathProductElem) = WreathProduct
parent(g::WreathProductElem) = g.parent
###############################################################################
#
# WreathProduct / WreathProductElem constructors
#
###############################################################################
# converts???
###############################################################################
#
# Parent object call overloads
#
###############################################################################
function (G::WreathProduct)(g::WreathProductElem)
try
G.N(g.n)
catch
throw("Can't coerce $(g.n) to $(G.N) factor of $G")
end
try
G.P(g.p)
catch
throw("Can't coerce $(g.p) to $(G.P) factor of $G")
end
elt = WreathProductElem(G.N(g.n), G.P(g.p))
elt.parent = G
return elt
end
doc"""
(G::WreathProduct)(n::DirectProductGroupElem, p::perm)
> Creates an element of wreath product `G` by coercing `n` and `p` to `G.N` and
> `G.P`, respectively.
"""
function (G::WreathProduct)(n::DirectProductGroupElem, p::perm)
result = WreathProductElem(n,p)
result.parent = G
return result
end
(G::WreathProduct)() = G(G.N(), G.P())
doc"""
(G::WreathProduct)(p::perm)
> Returns the image of permutation `p` in `G` via embedding `p -> (id,p)`.
"""
(G::WreathProduct)(p::perm) = G(G.N(), p)
doc"""
(G::WreathProduct)(n::DirectProductGroupElem)
> Returns the image of `n` in `G` via embedding `n -> (n,())`. This is the
> embedding that makes sequence `1 -> N -> G -> P -> 1` exact.
"""
(G::WreathProduct)(n::DirectProductGroupElem) = G(n, G.P())
###############################################################################
#
# Basic manipulation
#
###############################################################################
function deepcopy_internal(g::WreathProductElem, dict::ObjectIdDict)
G = parent(g)
return G(deepcopy(g.n), deepcopy(g.p))
end
function hash(G::WreathProduct, h::UInt)
return hash(G.N, hash(G.P, hash(WreathProduct, h)))
end
function hash(g::WreathProductElem, h::UInt)
return hash(g.n, hash(g.p, hash(parent(g), h)))
end
###############################################################################
#
# String I/O
#
###############################################################################
function show(io::IO, G::WreathProduct)
print(io, "Wreath Product of $(G.N.factors[1]) and $(G.P)")
end
function show(io::IO, g::WreathProductElem)
# println(io, "Element of WreathProduct over $T of size $(size(X)):")
# show(io, "text/plain", matrix_repr(X))
print(io, "($(g.n)$(g.p))")
end
###############################################################################
#
# Comparison
#
###############################################################################
function (==)(G::WreathProduct, H::WreathProduct)
G.N == H.N || return false
G.P == H.P || return false
return true
end
function (==)(g::WreathProductElem, h::WreathProductElem)
parent(g) == parent(h) || return false
g.n == h.n || return false
g.p == h.p || return false
return true
end
###############################################################################
#
# Binary operators
#
###############################################################################
function wreath_multiplication(g::WreathProductElem, h::WreathProductElem)
parent(g) == parent(h) || throw("Can not multiply elements from different
groups!")
G = parent(g)
w=G.N((h.n).elts[inv(g.p).d])
return G(g.n*w, g.p*h.p)
end
doc"""
*(g::WreathProductElem, h::WreathProductElem)
> Return the wreath product group operation of elements, i.e.
>
> g*h = (g.n*g.p(h.n), g.p*h.p),
>
> where g.p(h.n) denotes the action of `g.p::perm` on
> `h.n::DirectProductGroupElem` via standard permutation of coordinates.
"""
(*)(g::WreathProductElem, h::WreathProductElem) = wreath_multiplication(g,h)
###############################################################################
#
# Inversion
#
###############################################################################
doc"""
inv(g::WreathProductElem)
> Returns the inverse of element of a wreath product, according to the formula
> g^-1 = (g.n, g.p)^-1 = (g.p^-1(g.n^-1), g.p^-1).
"""
function inv(g::WreathProductElem)
G = parent(g)
w = G.N(inv(g.n).elts[g.p.d])
return G(w, inv(g.p))
end
###############################################################################
#
# Misc
#
###############################################################################
matrix_repr(g::WreathProductElem) = Any[matrix_repr(g.p) g.n]
function elements(G::WreathProduct)
iter = Base.product(collect(elements(G.N)), collect(elements(G.P)))
return (G(n)*G(p) for (n,p) in iter)
end
order(G::WreathProduct) = order(G.P)*order(G.N)
end # of module WreatProduct