moved orbit-related stuff to PropertyT package
This commit is contained in:
parent
d4661d762a
commit
5fa9c26475
232
Orb_AutFN.jl
232
Orb_AutFN.jl
@ -1,232 +0,0 @@
|
||||
using JLD
|
||||
using JuMP
|
||||
using SCS
|
||||
|
||||
using GroupRings
|
||||
using PropertyT
|
||||
|
||||
using ValidatedNumerics
|
||||
using ArgParse
|
||||
|
||||
import Nemo: Group, GroupElem
|
||||
|
||||
immutable Settings
|
||||
name::String
|
||||
N::Int
|
||||
G::Group
|
||||
S::Vector
|
||||
AutS::Group
|
||||
radius::Int
|
||||
solver::SCSSolver
|
||||
upper_bound::Float64
|
||||
tol::Float64
|
||||
end
|
||||
|
||||
immutable OrbitData
|
||||
name::String
|
||||
Us::Vector
|
||||
Ps::Vector{Array{JuMP.Variable,2}}
|
||||
cnstr::Vector
|
||||
laplacian::Vector
|
||||
laplacianSq::Vector
|
||||
dims::Vector{Int}
|
||||
end
|
||||
|
||||
include("OrbitDecomposition.jl")
|
||||
function sparsify{T}(U::Array{T}, eps=eps(T))
|
||||
n = rank(U)
|
||||
W = deepcopy(U)
|
||||
W[abs.(W) .< eps] = zero(T)
|
||||
if rank(W) != n
|
||||
warn("Sparsification would decrease the rank!")
|
||||
W = U
|
||||
end
|
||||
W = sparse(W)
|
||||
dropzeros!(W)
|
||||
return W
|
||||
end
|
||||
|
||||
function sparsify!{T}(U::SparseMatrixCSC{T}, eps=eps(T))
|
||||
U[abs.(U) .< eps] = zero(T)
|
||||
dropzeros!(U)
|
||||
return U
|
||||
end
|
||||
|
||||
sparsify{T}(U::SparseMatrixCSC{T}, eps=eps(T)) = sparsify!(deepcopy(U), eps)
|
||||
|
||||
function init_model(Uπs)
|
||||
m = JuMP.Model();
|
||||
l = size(Uπs,1)
|
||||
P = Vector{Array{JuMP.Variable,2}}(l)
|
||||
|
||||
for k in 1:l
|
||||
s = size(Uπs[k],2)
|
||||
P[k] = JuMP.@variable(m, [i=1:s, j=1:s])
|
||||
JuMP.@SDconstraint(m, P[k] >= 0.0)
|
||||
end
|
||||
|
||||
JuMP.@variable(m, λ >= 0.0)
|
||||
JuMP.@objective(m, Max, λ)
|
||||
return m, P
|
||||
end
|
||||
|
||||
function init_OrbitData(name::String)
|
||||
splap = load(joinpath(name, "delta.jld"), "Δ");
|
||||
pm = load(joinpath(name, "pm.jld"), "pm");
|
||||
cnstr = PropertyT.constraints_from_pm(pm);
|
||||
splap² = GroupRings.mul(splap, splap, pm);
|
||||
|
||||
Uπs = load(joinpath(name, "U_pis.jld"), "Uπs");
|
||||
# Uπs = sparsify.(Uπs);
|
||||
#dimensions of the corresponding πs:
|
||||
dims = load(joinpath(name, "U_pis.jld"), "dims")
|
||||
|
||||
m, P = init_model(Uπs);
|
||||
|
||||
orbits = load(joinpath(name, "orbits.jld"), "orbits");
|
||||
n = size(Uπs[1],1)
|
||||
orb_spcnstrm = [orbit_constraint(cnstr[collect(orb)], n) for orb in orbits]
|
||||
orb_splap = orbit_spvector(splap, orbits)
|
||||
orb_splap² = orbit_spvector(splap², orbits)
|
||||
|
||||
orbData = OrbitData(name, Uπs, P, orb_spcnstrm, orb_splap, orb_splap², dims);
|
||||
|
||||
# orbData = OrbitData(name, Uπs, P, orb_spcnstrm, splap, splap², dims);
|
||||
|
||||
return m, orbData
|
||||
end
|
||||
|
||||
function transform(U::AbstractArray, V::AbstractArray; sparse=false)
|
||||
w = U'*V*U
|
||||
sparse && sparsify!(w)
|
||||
return w
|
||||
end
|
||||
|
||||
A(data::OrbitData, π, t) = data.dims[π]*transform(data.Us[π], data.cnstr[t])
|
||||
|
||||
function constrLHS(m::JuMP.Model, data::OrbitData, t)
|
||||
l = endof(data.Us)
|
||||
lhs = @expression(m, sum(vecdot(A(data, π, t), data.Ps[π]) for π in 1:l))
|
||||
return lhs
|
||||
end
|
||||
|
||||
function addconstraints!(m::JuMP.Model, data::OrbitData, l::Int=length(data.laplacian); var::Symbol = :λ)
|
||||
λ = m[var]
|
||||
# orbits = load(joinpath(data.name, "orbits.jld"), "orbits");
|
||||
# locate(t, orb=orbits) = findfirst(x->t in x, orb)
|
||||
for t in 1:l
|
||||
d, d² = data.laplacian[t], data.laplacianSq[t]
|
||||
# lhs = constrLHS(m, data, locate(t))
|
||||
lhs = constrLHS(m, data, t)
|
||||
if lhs == zero(lhs)
|
||||
if d == 0 && d² == 0
|
||||
info("Detected empty constraint")
|
||||
continue
|
||||
else
|
||||
warn("Adding unsatisfiable constraint!")
|
||||
end
|
||||
end
|
||||
JuMP.@constraint(m, lhs == d² - λ*d)
|
||||
end
|
||||
end
|
||||
|
||||
function create_SDP_problem(name::String; upper_bound=Inf)
|
||||
info(PropertyT.logger, "Loading orbit data....")
|
||||
t = @timed SDP_problem, orb_data = init_OrbitData(name);
|
||||
info(PropertyT.logger, PropertyT.timed_msg(t))
|
||||
|
||||
if upper_bound < Inf
|
||||
λ = JuMP.getvariable(SDP_problem, :λ)
|
||||
JuMP.@constraint(SDP_problem, λ <= upper_bound)
|
||||
end
|
||||
|
||||
info(PropertyT.logger, "Adding constraints... ")
|
||||
t = @timed addconstraints!(SDP_problem, orb_data)
|
||||
info(PropertyT.logger, PropertyT.timed_msg(t))
|
||||
|
||||
return SDP_problem, orb_data
|
||||
end
|
||||
|
||||
function λandP(m::JuMP.Model, data::OrbitData)
|
||||
varλ = m[:λ]
|
||||
varP = data.Ps
|
||||
λ, Ps = PropertyT.λandP(data.name, m, varλ, varP)
|
||||
return λ, Ps
|
||||
end
|
||||
|
||||
function λandP(m::JuMP.Model, data::OrbitData, sett::Settings)
|
||||
info(PropertyT.logger, "Solving SDP problem...")
|
||||
λ, Ps = λandP(m, data)
|
||||
|
||||
info(PropertyT.logger, "Reconstructing P...")
|
||||
mreps = matrix_reps(sett.G, sett.S, sett.AutS, sett.radius)
|
||||
|
||||
recP = reconstruct_sol(mreps, data.Us, Ps, data.dims)
|
||||
|
||||
fname = PropertyT.λSDPfilenames(data.name)[2]
|
||||
save(fname, "origP", Ps, "P", recP)
|
||||
return λ, recP
|
||||
end
|
||||
|
||||
function init_orbit_data(logger, sett::Settings; radius=2)
|
||||
|
||||
ex(fname) = isfile(joinpath(sett.name, fname))
|
||||
|
||||
files_exists = ex.(["delta.jld", "pm.jld", "U_pis.jld", "orbits.jld"])
|
||||
|
||||
if !all(files_exists)
|
||||
compute_orbit_data(logger, sett.name, sett.G, sett.S, sett.AutS, radius=radius)
|
||||
end
|
||||
|
||||
return 0
|
||||
end
|
||||
|
||||
function orbit_check_propertyT(logger, sett::Settings)
|
||||
|
||||
init_orbit_data(logger, sett, radius=sett.radius)
|
||||
|
||||
Δ = PropertyT.ΔandSDPconstraints(sett.name, sett.G)[1]
|
||||
|
||||
fnames = PropertyT.λSDPfilenames(sett.name)
|
||||
|
||||
if all(isfile.(fnames))
|
||||
λ, P = PropertyT.λandP(sett.name)
|
||||
else
|
||||
info(logger, "Creating SDP problem...")
|
||||
SDP_problem, orb_data = create_SDP_problem(sett.name, upper_bound=sett.upper_bound)
|
||||
JuMP.setsolver(SDP_problem, sett.solver)
|
||||
|
||||
λ, P = λandP(SDP_problem, orb_data, sett)
|
||||
end
|
||||
|
||||
info(logger, "λ = $λ")
|
||||
info(logger, "sum(P) = $(sum(P))")
|
||||
info(logger, "maximum(P) = $(maximum(P))")
|
||||
info(logger, "minimum(P) = $(minimum(P))")
|
||||
|
||||
if λ > 0
|
||||
|
||||
isapprox(eigvals(P), abs(eigvals(P)), atol=sett.tol) ||
|
||||
warn("The solution matrix doesn't seem to be positive definite!")
|
||||
# @assert P == Symmetric(P)
|
||||
Q = real(sqrtm(Symmetric(P)))
|
||||
|
||||
sgap = PropertyT.check_distance_to_positive_cone(Δ, λ, Q, 2*sett.radius, tol=sett.tol, rational=false)
|
||||
if isa(sgap, Interval)
|
||||
sgap = sgap.lo
|
||||
end
|
||||
if sgap > 0
|
||||
info(logger, "λ ≥ $(Float64(trunc(sgap,12)))")
|
||||
Kazhdan_κ = PropertyT.Kazhdan_from_sgap(sgap, length(sett.S))
|
||||
Kazhdan_κ = Float64(trunc(Kazhdan_κ, 12))
|
||||
info(logger, "κ($(sett.name), S) ≥ $Kazhdan_κ: Group HAS property (T)!")
|
||||
return true
|
||||
else
|
||||
sgap = Float64(trunc(sgap, 12))
|
||||
info(logger, "λ($(sett.name), S) ≥ $sgap: Group may NOT HAVE property (T)!")
|
||||
return false
|
||||
end
|
||||
end
|
||||
info(logger, "κ($(sett.name), S) ≥ $λ < 0: Tells us nothing about property (T)")
|
||||
return false
|
||||
end
|
@ -1,206 +0,0 @@
|
||||
push!(LOAD_PATH, "./")
|
||||
|
||||
using Nemo
|
||||
using Groups
|
||||
|
||||
using GroupRings
|
||||
using PropertyT
|
||||
|
||||
import Nemo.elements
|
||||
|
||||
using JLD
|
||||
|
||||
include("Projections.jl")
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Iterator protocol for Nemo.FinField
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
type FFEltsIter{T<:Nemo.FinField}
|
||||
all::Int
|
||||
field::T
|
||||
|
||||
function FFEltsIter(F::T)
|
||||
return new(Int(characteristic(F)^degree(F)), F)
|
||||
end
|
||||
end
|
||||
FFEltsIter{T<:Nemo.FinField}(F::T) = FFEltsIter{T}(F)
|
||||
|
||||
import Base: start, next, done, eltype, length
|
||||
|
||||
Base.start(A::FFEltsIter) = (zero(A.field), 0)
|
||||
Base.next(A::FFEltsIter, state) = next_ffelem(state...)
|
||||
Base.done(A::FFEltsIter, state) = state[2] >= A.all
|
||||
Base.eltype(::Type{FFEltsIter}) = elem_type(A.field)
|
||||
Base.length(A::FFEltsIter) = A.all
|
||||
|
||||
function next_ffelem(f::Nemo.FinFieldElem, c::Int)
|
||||
if c == 0
|
||||
return (f, (f, 1))
|
||||
elseif c == 1
|
||||
f = one(parent(f))
|
||||
return (f, (f, 2))
|
||||
else
|
||||
f = gen(parent(f))*f
|
||||
return (f, (f, c+1))
|
||||
end
|
||||
end
|
||||
|
||||
import Nemo.elements
|
||||
elements(F::Nemo.FinField) = FFEltsIter(F)
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Orbit stuff
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function orbit_decomposition(G::Nemo.Group, E::Vector, rdict=GroupRings.reverse_dict(E))
|
||||
|
||||
elts = collect(elements(G))
|
||||
|
||||
tovisit = trues(E);
|
||||
orbits = Vector{Vector{Int}}()
|
||||
|
||||
for i in 1:endof(E)
|
||||
if tovisit[i]
|
||||
orbit = Vector{Int}()
|
||||
a = E[i]
|
||||
for g in elts
|
||||
idx = rdict[g(a)]
|
||||
tovisit[idx] = false
|
||||
push!(orbit,idx)
|
||||
end
|
||||
push!(orbits, unique(orbit))
|
||||
end
|
||||
end
|
||||
return orbits
|
||||
end
|
||||
|
||||
function orbit_spvector(vect::AbstractVector, orbits)
|
||||
orb_vector = spzeros(length(orbits))
|
||||
|
||||
for (i,o) in enumerate(orbits)
|
||||
k = vect[collect(o)]
|
||||
val = k[1]
|
||||
@assert all(k .== val)
|
||||
orb_vector[i] = val
|
||||
end
|
||||
|
||||
return orb_vector
|
||||
end
|
||||
|
||||
function orbit_constraint(constraints::Vector{Vector{Vector{Int64}}}, n)
|
||||
result = spzeros(n,n)
|
||||
for cnstr in constraints
|
||||
for p in cnstr
|
||||
result[p[2], p[1]] += 1.0
|
||||
end
|
||||
end
|
||||
return 1/length(constraints)*result
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Matrix- and C*-representations
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function matrix_repr(g::GroupElem, E, E_dict)
|
||||
rep_matrix = spzeros(Int, length(E), length(E))
|
||||
for (i,e) in enumerate(E)
|
||||
j = E_dict[g(e)]
|
||||
rep_matrix[i,j] = 1
|
||||
end
|
||||
return rep_matrix
|
||||
end
|
||||
|
||||
function matrix_reps{T<:GroupElem}(G::Nemo.Group, S::Vector{T}, AutS::Nemo.Group, radius::Int)
|
||||
Id = (isa(G, Nemo.Ring) ? one(G) : G())
|
||||
E2, _ = Groups.generate_balls(S, Id, radius=radius)
|
||||
Edict = GroupRings.reverse_dict(E2)
|
||||
|
||||
mreps = Dict(g=>matrix_repr(g, E2, Edict) for g in elements(AutS))
|
||||
return mreps
|
||||
end
|
||||
|
||||
function reconstruct_sol(mreps::Dict, Us::Vector, Ps::Vector, dims::Vector)
|
||||
recP = zeros(size(Us[1],1), size(Us[1],1))
|
||||
|
||||
for g in keys(mreps)
|
||||
for π in 1:endof(Us)
|
||||
recP .+= dims[π] .* mreps[g]*transform(Us[π]', Ps[π])*mreps[inv(g)]
|
||||
end
|
||||
end
|
||||
recP .*= 1/length(collect(keys(mreps)))
|
||||
|
||||
return recP
|
||||
end
|
||||
|
||||
function Cstar_repr(x::GroupRingElem, mreps)
|
||||
k = collect(keys(mreps))[1]
|
||||
res = zeros(size(mreps[k])...)
|
||||
|
||||
for g in parent(x).basis
|
||||
res .+= x[g]*mreps[g]
|
||||
end
|
||||
return res
|
||||
end
|
||||
|
||||
function orthSVD(M::AbstractMatrix)
|
||||
M = full(M)
|
||||
fact = svdfact(M)
|
||||
singv = fact[:S]
|
||||
M_rank = sum(singv .> maximum(size(M))*eps(eltype(singv)))
|
||||
return fact[:U][:,1:M_rank]
|
||||
end
|
||||
|
||||
function compute_orbit_data{T<:GroupElem}(logger, name::String, G::Nemo.Group, S::Vector{T}, AutS; radius=2)
|
||||
isdir(name) || mkdir(name)
|
||||
|
||||
info(logger, "Generating ball of radius $(2*radius)")
|
||||
|
||||
# TODO: Fix that by multiple dispatch?
|
||||
Id = (isa(G, Nemo.Ring) ? one(G) : G())
|
||||
|
||||
@time E4, sizes = Groups.generate_balls(S, Id, radius=2*radius);
|
||||
info(logger, "Balls of sizes $sizes.")
|
||||
info(logger, "Reverse dict")
|
||||
@time E_dict = GroupRings.reverse_dict(E4)
|
||||
|
||||
info(logger, "Product matrix")
|
||||
@time pm = GroupRings.create_pm(E4, E_dict, sizes[radius], twisted=true)
|
||||
RG = GroupRing(G, E4, E_dict, pm)
|
||||
Δ = PropertyT.splaplacian(RG, S)
|
||||
@assert GroupRings.augmentation(Δ) == 0
|
||||
save(joinpath(name, "delta.jld"), "Δ", Δ.coeffs)
|
||||
save(joinpath(name, "pm.jld"), "pm", pm)
|
||||
|
||||
info(logger, "Decomposing E into orbits of $(AutS)")
|
||||
@time orbs = orbit_decomposition(AutS, E4, E_dict)
|
||||
@assert sum(length(o) for o in orbs) == length(E4)
|
||||
save(joinpath(name, "orbits.jld"), "orbits", orbs)
|
||||
|
||||
info(logger, "Action matrices")
|
||||
E2 = E4[1:sizes[radius]]
|
||||
@time AutS_mreps = Dict(g=>matrix_repr(g, E2, E_dict) for g in elements(AutS))
|
||||
|
||||
info(logger, "Projections")
|
||||
@time AutS_mps = rankOne_projections(AutS);
|
||||
|
||||
@time π_E_projections = [Cstar_repr(p, AutS_mreps) for p in AutS_mps]
|
||||
|
||||
info(logger, "Uπs...")
|
||||
@time Uπs = orthSVD.(π_E_projections)
|
||||
|
||||
multiplicities = size.(Uπs,2)
|
||||
info(logger, "multiplicities = $multiplicities")
|
||||
dimensions = [Int(p[AutS()]*Int(order(AutS))) for p in AutS_mps];
|
||||
info(logger, "dimensions = $dimensions")
|
||||
@assert dot(multiplicities, dimensions) == sizes[radius]
|
||||
|
||||
save(joinpath(name, "U_pis.jld"), "Uπs", Uπs, "dims", dimensions)
|
||||
return 0
|
||||
end
|
135
Projections.jl
135
Projections.jl
@ -1,135 +0,0 @@
|
||||
using DirectProducts
|
||||
using WreathProducts
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Characters of PermutationGroup
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function chars(G::PermutationGroup)
|
||||
permtype_unsorted(σ::Nemo.perm) = [length(c) for c in cycles(σ)]
|
||||
permtype(σ::Nemo.perm) = sort(permtype_unsorted(σ))
|
||||
|
||||
χ_id(σ::Nemo.perm) = 1
|
||||
|
||||
χ_sgn(σ::Nemo.perm) = (-1)^parity(σ)
|
||||
|
||||
function χ_reg(σ::Nemo.perm)
|
||||
fixed_points = countnz([(x == y? 1 : 0) for (x,y) in enumerate(σ.d)])
|
||||
return fixed_points - 1
|
||||
end
|
||||
|
||||
χ_regsgn(σ::Nemo.perm) = (-1)^parity(σ)*χ_reg(σ)
|
||||
|
||||
function χ_regviaS3(σ::Nemo.perm)
|
||||
@assert parent(σ).n == 4
|
||||
t = permtype(σ)
|
||||
if t == [1,1,1,1]
|
||||
result = 2
|
||||
elseif t == [2,2]
|
||||
result = 2
|
||||
elseif t == [1,3]
|
||||
result = -1
|
||||
else
|
||||
result = 0
|
||||
end
|
||||
return result
|
||||
end
|
||||
|
||||
chars = [χ_id, χ_sgn, χ_regviaS3, χ_reg, χ_regsgn]
|
||||
|
||||
if G.n == 1
|
||||
return chars[1:1]
|
||||
elseif G.n == 2
|
||||
return chars[1:2]
|
||||
elseif G.n == 3
|
||||
return [chars[1:2]..., chars[4]]
|
||||
elseif G.n == 4
|
||||
return chars[1:5]
|
||||
else
|
||||
throw("Characters for $G unknown!")
|
||||
end
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Character of DirectProducts
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function epsilon(i, g::DirectProducts.DirectProductGroupElem)
|
||||
return reduce(*, 1, ((-1)^isone(g.elts[j]) for j in 1:i))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Projections
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function central_projection(RG::GroupRing, char::Function, T::Type=Rational{Int})
|
||||
result = RG(T)
|
||||
for g in RG.basis
|
||||
result[g] = char(inv(g))
|
||||
end
|
||||
return convert(T, char(RG.group())//Int(order(RG.group))*result)
|
||||
end
|
||||
|
||||
function rankOne_projections(G::PermutationGroup, T::Type=Rational{Int})
|
||||
RG = GroupRing(G)
|
||||
projections = [central_projection(RG, χ, T) for χ in chars(G)]
|
||||
|
||||
if G.n == 1 || G.n == 2
|
||||
return projections
|
||||
elseif G.n == 3
|
||||
rankone_projs = [
|
||||
projections[1],
|
||||
projections[2],
|
||||
1//2*(one(RG) - RG(RG.group([2,1,3])))*projections[3]
|
||||
]
|
||||
return rankone_projs
|
||||
elseif G.n == 4
|
||||
rankone_projs = [
|
||||
projections[1],
|
||||
projections[2],
|
||||
1//2*(one(RG) - RG(RG.group([2,1,3,4])))*projections[3],
|
||||
1//2*(one(RG) - RG(RG.group([2,1,3,4])))*projections[4],
|
||||
1//2*(one(RG) + RG(RG.group([2,1,3,4])))*projections[5]]
|
||||
return rankone_projs
|
||||
else
|
||||
throw("Rank-one projections for $G unknown!")
|
||||
end
|
||||
end
|
||||
|
||||
function rankOne_projections(BN::WreathProducts.WreathProduct, T::Type=Rational{Int})
|
||||
|
||||
N = BN.P.n
|
||||
# projections as elements of the group rings RSₙ
|
||||
SNprojs_nc = [rankOne_projections(PermutationGroup(i), T) for i in 1:N]
|
||||
|
||||
# embedding into group ring of BN
|
||||
RBN = GroupRing(BN)
|
||||
RFFFF_projs = [central_projection(GroupRing(BN.N), g->epsilon(i,g), T)
|
||||
for i in 0:BN.P.n]
|
||||
Qs = [RBN(q, g -> BN(g)) for q in RFFFF_projs]
|
||||
|
||||
function incl(k::Int, g::perm, WP::WreathProduct=BN)
|
||||
@assert length(g.d) + k <= WP.P.n
|
||||
arr = [1:k; g.d .+ k; (length(g.d)+k+1):WP.P.n]
|
||||
return WP(WP.P(arr))
|
||||
end
|
||||
|
||||
all_projs=[Qs[1]*RBN(p, g-> incl(0,g)) for p in SNprojs_nc[N]]
|
||||
|
||||
for i in 1:N-1
|
||||
Sk_first = [RBN(p, g->incl(0,g)) for p in SNprojs_nc[i]]
|
||||
Sk_last = [RBN(p, g->incl(i,g)) for p in SNprojs_nc[N-i]]
|
||||
append!(all_projs,
|
||||
[Qs[i+1]*p1*p2 for (p1,p2) in Base.product(Sk_first,Sk_last)])
|
||||
end
|
||||
|
||||
append!(all_projs, [Qs[N+1]*RBN(p, g-> incl(0,g)) for p in SNprojs_nc[N]])
|
||||
|
||||
return all_projs
|
||||
end
|
Loading…
Reference in New Issue
Block a user