Using Nemo instead of Mods

much faster for finite fields; a bit slower for Z
This commit is contained in:
kalmar 2017-03-26 16:06:41 +02:00
parent 4c55783a37
commit 6570c99300

93
SL.jl
View File

@ -2,92 +2,37 @@ using ArgParse
using GroupAlgebras
using PropertyT
using Mods
import Primes: isprime
using Nemo
import SCS.SCSSolver
function E(i::Int, j::Int, M::Nemo.MatSpace)
@assert i≠j
m = one(M)
m[i,j] = m[1,1]
return m
end
function SL_generatingset(n::Int)
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
S = [E(i,j,N=n) for (i,j) in indexing];
S = vcat(S, [convert(Array{Int,2},x') for x in S]);
S = vcat(S, [convert(Array{Int,2},inv(x)) for x in S]);
return unique(S)
end
function E(i::Int, j::Int; val=1, N::Int=3, mod=Inf)
@assert i≠j
m = eye(Int, N)
m[i,j] = val
if mod == Inf
return m
else
return [Mod(x,mod) for x in m]
end
end
function cofactor(i,j,M)
z1 = ones(Bool,size(M,1))
z1[i] = false
z2 = ones(Bool,size(M,2))
z2[j] = false
return M[z1,z2]
end
import Base.LinAlg.det
function det(M::Array{Mod,2})
if size(M,1) size(M,2)
d = Mod(0,M[1,1].mod)
elseif size(M,1) == 1
d = M[1,1]
elseif size(M,1) == 2
d = M[1,1]*M[2,2] - M[1,2]*M[2,1]
else
d = zero(eltype(M))
for i in 1:size(M,1)
d += (-1)^(i+1)*M[i,1]*det(cofactor(i,1,M))
end
end
# @show (M, d)
return d
end
function adjugate(M)
K = similar(M)
for i in 1:size(M,1), j in 1:size(M,2)
K[j,i] = (-1)^(i+j)*det(cofactor(i,j,M))
end
return K
end
import Base: inv, one, zero, *
one(::Type{Mod}) = 1
zero(::Type{Mod}) = 0
zero(x::Mod) = Mod(x.mod)
function inv(M::Array{Mod,2})
d = det(M)
d 0*d || throw(ArgumentError("Matrix is not invertible! $M"))
return inv(det(M)).*adjugate(M)
return adjugate(M)
G = Nemo.MatrixSpace(Nemo.ZZ, n,n)
S = [E(i,j,G) for (i,j) in indexing];
S = vcat(S, [transpose(x) for x in S]);
S = vcat(S, [inv(x) for x in S]);
return unique(S), one(G)
end
function SL_generatingset(n::Int, p::Int)
p == 0 && return SL_generatingset(n)
(p > 1 && n > 0) || throw(ArgumentError("Both n and p should be positive integers!"))
isprime(p) || throw(ArgumentError("p should be a prime number!"))
F = Nemo.ResidueRing(Nemo.ZZ, p)
G = Nemo.MatrixSpace(F, n,n)
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
S = [E(i,j, N=n, mod=p) for (i,j) in indexing]
S = [E(i, j, G) for (i,j) in indexing]
S = vcat(S, [transpose(x) for x in S])
S = vcat(S, [inv(s) for s in S])
S = vcat(S, [permutedims(x, [2,1]) for x in S]);
return unique(S)
return unique(S), one(G)
end
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})