Update SL.jl to the newest GroupRings/PropertyT

This commit is contained in:
kalmar 2017-06-06 12:03:58 +02:00
parent dc9cd4c9ac
commit 86b8127322

77
SL.jl
View File

@ -1,12 +1,11 @@
using ArgParse
using GroupAlgebras
using PropertyT
using Nemo
using GroupRings
using PropertyT
import SCS.SCSSolver
function E(i::Int, j::Int, M::Nemo.MatSpace)
@assert i≠j
m = one(M)
@ -19,8 +18,7 @@ function SL_generatingset(n::Int)
G = Nemo.MatrixSpace(Nemo.ZZ, n,n)
S = [E(i,j,G) for (i,j) in indexing];
S = vcat(S, [transpose(x) for x in S]);
S = vcat(S, [inv(x) for x in S]);
return unique(S), one(G)
return unique(S)
end
function SLsize(n,p)
@ -34,37 +32,15 @@ end
function SL_generatingset(n::Int, p::Int)
p == 0 && return SL_generatingset(n)
(p > 1 && n > 0) || throw(ArgumentError("Both n and p should be positive integers!"))
println("Size(SL(n,p)) = $(SLsize(n,p))")
println("Size(SL($n,$p)) = $(SLsize(n,p))")
F = Nemo.ResidueRing(Nemo.ZZ, p)
G = Nemo.MatrixSpace(F, n,n)
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
S = [E(i, j, G) for (i,j) in indexing]
S = vcat(S, [transpose(x) for x in S])
S = vcat(S, [inv(s) for s in S])
return unique(S), one(G)
return unique(S)
end
function ΔandSDPconstraints(Id, S, radius)
B, sizes = PropertyT.generate_balls(Id, S, radius=2*radius)
println("Generated balls of sizes $sizes")
basis = B[1:sizes[radius]]
product_matrix = PropertyT.create_product_matrix(B, sizes[radius]);
sdp_constraints = PropertyT.constraints_from_pm(product_matrix, length(B))
L_coeff = PropertyT.splaplacian_coeff(S, basis, length(B));
Δ = GroupAlgebraElement(L_coeff, product_matrix)
return Δ, sdp_constraints
end
#=
To use file property(T).jl (specifically: check_property_T function)
You need to define:
function ΔandSDPconstraints(identity, S):: (Δ, sdp_constraints)
=#
function cpuinfo_physicalcores()
maxcore = -1
for line in eachline("/proc/cpuinfo")
@ -107,7 +83,7 @@ function parse_commandline()
"--radius"
help = "Find the decomposition over B_r(e,S)"
arg_type = Int
default = 0
default = 2
end
return parse_args(s)
@ -115,38 +91,45 @@ end
function main()
parsed_args = parse_commandline()
if parsed_args["cpus"] nothing
if parsed_args["cpus"] > cpuinfo_physicalcores()
warn("Number of specified cores exceeds the physical core cound. Performance will suffer.")
end
Blas.set_num_threads(parsed_args["cpus"])
end
tol = parsed_args["tol"]
iterations = parsed_args["iterations"]
solver = SCSSolver(eps=tol, max_iters=iterations, verbose=true)
solver = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct)
N = parsed_args["N"]
upper_bound = parsed_args["upper-bound"]
p = parsed_args["p"]
if p == 0
name = "SL$(N)Z"
else
name = "SL$(N)_$p"
end
radius = parsed_args["radius"]
if radius == 0
name = name*"-$(string(upper_bound))"
radius = 2
else
name = name*"-$(string(upper_bound))-r=$radius"
end
S() = SL_generatingset(N, p)
if parsed_args["cpus"] nothing
if parsed_args["cpus"] > cpuinfo_physicalcores()
warn("Number of specified cores exceeds the physical core cound. Performance will suffer.")
end
Blas.set_num_threads(parsed_args["cpus"])
end
@time PropertyT.check_property_T(name, S, solver, upper_bound, tol, radius)
radius = parsed_args["radius"]
name = "$name_$iterations-$(string(upper_bound))-r=$radius"
logger = PropertyT.setup_logging(name)
info(logger, "Group: $name")
info(logger, "Iterations: $iterations")
info(logger, "Precision: $tol")
info(logger, "Upper bound: $upper_bound")
S = SL_generatingset(N, p)
S = unique([S; [inv(s) for s in S]])
Id = one(parent(S[1]))
@time PropertyT.check_property_T(name, S, Id, solver, upper_bound, tol, radius)
return 0
end