Initial Commit
This commit is contained in:
commit
884be48c38
183
AutFN.jl
Normal file
183
AutFN.jl
Normal file
@ -0,0 +1,183 @@
|
|||||||
|
using JLD
|
||||||
|
using JuMP
|
||||||
|
import SCS: SCSSolver
|
||||||
|
import Mosek: MosekSolver
|
||||||
|
|
||||||
|
using Groups
|
||||||
|
using ProgressMeter
|
||||||
|
|
||||||
|
#=
|
||||||
|
Note that the element
|
||||||
|
α(i,j,k) = ϱ(i,j)*ϱ(i,k)*inv(ϱ(i,j))*inv(ϱ(i,k)),
|
||||||
|
which surely belongs to ball of radius 4 in Aut(F₄) becomes trivial under the representation
|
||||||
|
Aut(F₄) → GL₄(ℤ)⋉ℤ⁴ → GL₅(ℂ).
|
||||||
|
Moreover, due to work of Potapchik and Rapinchuk [1] every real representation of Aut(Fₙ) into GLₘ(ℂ) (for m ≤ 2n-2) factors through GLₙ(ℤ)⋉ℤⁿ, so will have the same problem.
|
||||||
|
|
||||||
|
We need a different approach: Here we actually compute in Aut(𝔽₄)
|
||||||
|
=#
|
||||||
|
|
||||||
|
import Combinatorics.nthperm
|
||||||
|
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
|
||||||
|
|
||||||
|
function generating_set_of_AutF(N::Int)
|
||||||
|
|
||||||
|
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
||||||
|
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
||||||
|
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||||
|
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||||
|
ɛs = [flip_AutSymbol(i) for i in 1:N];
|
||||||
|
|
||||||
|
S = vcat(ϱs,λs)
|
||||||
|
S = vcat(S..., σs..., ɛs)
|
||||||
|
S = vcat(S..., [inv(g) for g in S])
|
||||||
|
return Vector{AutWord}(unique(S))
|
||||||
|
end
|
||||||
|
|
||||||
|
function generating_set_of_OutF(N::Int)
|
||||||
|
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
||||||
|
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||||
|
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||||
|
ɛs = [flip_AutSymbol(i) for i in 1:N];
|
||||||
|
|
||||||
|
S = ϱs
|
||||||
|
push!(S, λs..., ɛs...)
|
||||||
|
push!(S,[inv(g) for g in S]...)
|
||||||
|
return Vector{AutWord}(unique(S))
|
||||||
|
end
|
||||||
|
|
||||||
|
function generating_set_of_Sym(N::Int)
|
||||||
|
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
||||||
|
|
||||||
|
S = σs
|
||||||
|
push!(S, [inv(s) for s in S]...)
|
||||||
|
return Vector{AutWord}(unique(S))
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
function products(S1::Vector{AutWord}, S2::Vector{AutWord})
|
||||||
|
result = Vector{AutWord}()
|
||||||
|
seen = Set{Vector{FGWord}}()
|
||||||
|
n = length(S1)
|
||||||
|
p = Progress(n, 1, "Computing complete products...", 50)
|
||||||
|
for (i,x) in enumerate(S1)
|
||||||
|
for y in S2
|
||||||
|
z::AutWord = x*y
|
||||||
|
v::Vector{FGWord} = z(domain)
|
||||||
|
if !in(v, seen)
|
||||||
|
push!(seen, v)
|
||||||
|
push!(result, z)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
next!(p)
|
||||||
|
end
|
||||||
|
return result
|
||||||
|
end
|
||||||
|
|
||||||
|
function products_images(S1::Vector{AutWord}, S2::Vector{AutWord})
|
||||||
|
result = Vector{Vector{FGWord}}()
|
||||||
|
seen = Set{Vector{FGWord}}()
|
||||||
|
n = length(S1)
|
||||||
|
|
||||||
|
p = Progress(n, 1, "Computing images of elts in B₄...", 50)
|
||||||
|
for (i,x) in enumerate(S1)
|
||||||
|
z = x(domain)
|
||||||
|
for y in S2
|
||||||
|
v = y(z)
|
||||||
|
if !in(v, seen)
|
||||||
|
push!(seen, v)
|
||||||
|
push!(result, v)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
next!(p)
|
||||||
|
end
|
||||||
|
return result
|
||||||
|
end
|
||||||
|
|
||||||
|
function hashed_product{T}(image::T, B, images_dict::Dict{T, Int})
|
||||||
|
n = size(B,1)
|
||||||
|
column = zeros(Int,n)
|
||||||
|
Threads.@threads for j in 1:n
|
||||||
|
w = (B[j])(image)
|
||||||
|
k = images_dict[w]
|
||||||
|
k ≠ 0 || throw(ArgumentError(
|
||||||
|
"($i,$j): $(x^-1)*$y don't seem to be supported on basis!"))
|
||||||
|
column[j] = k
|
||||||
|
end
|
||||||
|
return column
|
||||||
|
end
|
||||||
|
|
||||||
|
function create_product_matrix(basis::Vector{AutWord}, images)
|
||||||
|
n = length(basis)
|
||||||
|
product_matrix = zeros(Int, (n, n));
|
||||||
|
print("Creating hashtable of images...")
|
||||||
|
@time images_dict = Dict{Vector{FGWord}, Int}(x => i
|
||||||
|
for (i,x) in enumerate(images))
|
||||||
|
|
||||||
|
p = Progress(n, 1, "Computing product matrix in basis...", 50)
|
||||||
|
for i in 1:n
|
||||||
|
z = (inv(basis[i]))(domain)
|
||||||
|
product_matrix[i,:] = hashed_product(z, basis, images_dict)
|
||||||
|
next!(p)
|
||||||
|
end
|
||||||
|
return product_matrix
|
||||||
|
end
|
||||||
|
|
||||||
|
function ΔandSDPconstraints(identity::AutWord, S::Vector{AutWord})
|
||||||
|
|
||||||
|
println("Generating Balls of increasing radius...")
|
||||||
|
@time B₁ = vcat([identity], S)
|
||||||
|
@time B₂ = products(B₁,B₁);
|
||||||
|
@show length(B₂)
|
||||||
|
if length(B₂) != length(B₁)
|
||||||
|
@time B₃ = products(B₁, B₂)
|
||||||
|
@show length(B₃)
|
||||||
|
if length(B₃) != length(B₂)
|
||||||
|
@time B₄_images = products_images(B₁, B₃)
|
||||||
|
else
|
||||||
|
B₄_images = unique([f(domain) for f in B₃])
|
||||||
|
end
|
||||||
|
else
|
||||||
|
B₃ = B₂
|
||||||
|
B₄ = B₂
|
||||||
|
B₄_images = unique([f(domain) for f in B₃])
|
||||||
|
end
|
||||||
|
|
||||||
|
@show length(B₄_images)
|
||||||
|
# @assert length(B₄_images) == 3425657
|
||||||
|
|
||||||
|
println("Creating product matrix...")
|
||||||
|
@time pm = create_product_matrix(B₂, B₄_images)
|
||||||
|
println("Creating sdp_constratints...")
|
||||||
|
@time sdp_constraints = constraints_from_pm(pm)
|
||||||
|
|
||||||
|
L_coeff = splaplacian_coeff(S, B₂, length(B₄_images))
|
||||||
|
Δ = GroupAlgebraElement(L_coeff, Array{Int,2}(pm))
|
||||||
|
|
||||||
|
return Δ, sdp_constraints
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
@everywhere push!(LOAD_PATH, "./")
|
||||||
|
using GroupAlgebras
|
||||||
|
include("property(T).jl")
|
||||||
|
|
||||||
|
const symbols = [FGSymbol("x₁",1), FGSymbol("x₂",1), FGSymbol("x₃",1), FGSymbol("x₄",1), FGSymbol("x₅",1), FGSymbol("x₆",1)]
|
||||||
|
|
||||||
|
const TOL=1e-8
|
||||||
|
const N = 4
|
||||||
|
const domain = Vector{FGWord}(symbols[1:N])
|
||||||
|
const ID = one(AutWord)
|
||||||
|
|
||||||
|
# const name = "SYM$N"
|
||||||
|
# const upper_bound=factorial(N)-TOL^(1/5)
|
||||||
|
# S() = generating_set_of_Sym(N)
|
||||||
|
|
||||||
|
# name = "AutF$N"
|
||||||
|
# S() = generating_set_of_AutF(N)
|
||||||
|
|
||||||
|
name = "OutF$N"
|
||||||
|
S() = generating_set_of_OutF(N)
|
||||||
|
const upper_bound=0.05
|
||||||
|
|
||||||
|
BLAS.set_num_threads(4)
|
||||||
|
@time check_property_T(name, ID, S; verbose=true, tol=TOL, upper_bound=upper_bound)
|
133
GroupAlgebras.jl
Normal file
133
GroupAlgebras.jl
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
module GroupAlgebras
|
||||||
|
|
||||||
|
import Base: convert, show, isequal, ==
|
||||||
|
import Base: +, -, *, //
|
||||||
|
import Base: size, length, norm, rationalize
|
||||||
|
|
||||||
|
export GroupAlgebraElement
|
||||||
|
|
||||||
|
|
||||||
|
immutable GroupAlgebraElement{T<:Number}
|
||||||
|
coefficients::AbstractVector{T}
|
||||||
|
product_matrix::Array{Int,2}
|
||||||
|
# basis::Array{Any,1}
|
||||||
|
|
||||||
|
function GroupAlgebraElement(coefficients::AbstractVector,
|
||||||
|
product_matrix::Array{Int,2})
|
||||||
|
|
||||||
|
size(product_matrix, 1) == size(product_matrix, 2) ||
|
||||||
|
throw(ArgumentError("Product matrix has to be square"))
|
||||||
|
new(coefficients, product_matrix)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
# GroupAlgebraElement(c,pm,b) = GroupAlgebraElement(c,pm)
|
||||||
|
GroupAlgebraElement{T}(c::AbstractVector{T},pm) = GroupAlgebraElement{T}(c,pm)
|
||||||
|
|
||||||
|
convert{T<:Number}(::Type{T}, X::GroupAlgebraElement) =
|
||||||
|
GroupAlgebraElement(convert(AbstractVector{T}, X.coefficients), X.product_matrix)
|
||||||
|
|
||||||
|
show{T}(io::IO, X::GroupAlgebraElement{T}) = print(io,
|
||||||
|
"Element of Group Algebra over $T of length $(length(X)):\n $(X.coefficients)")
|
||||||
|
|
||||||
|
|
||||||
|
function isequal{T, S}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{S})
|
||||||
|
if T != S
|
||||||
|
warn("Comparing elements with different coefficients Rings!")
|
||||||
|
end
|
||||||
|
X.product_matrix == Y.product_matrix || return false
|
||||||
|
X.coefficients == Y.coefficients || return false
|
||||||
|
return true
|
||||||
|
end
|
||||||
|
|
||||||
|
(==)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = isequal(X,Y)
|
||||||
|
|
||||||
|
function add{T<:Number}(X::GroupAlgebraElement{T}, Y::GroupAlgebraElement{T})
|
||||||
|
X.product_matrix == Y.product_matrix || throw(ArgumentError(
|
||||||
|
"Elements don't seem to belong to the same Group Algebra!"))
|
||||||
|
return GroupAlgebraElement(X.coefficients+Y.coefficients, X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
function add{T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
||||||
|
Y::GroupAlgebraElement{S})
|
||||||
|
warn("Adding elements with different base rings!")
|
||||||
|
return GroupAlgebraElement(+(promote(X.coefficients, Y.coefficients)...),
|
||||||
|
X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
(+)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,Y)
|
||||||
|
(-)(X::GroupAlgebraElement) = GroupAlgebraElement(-X.coefficients, X.product_matrix)
|
||||||
|
(-)(X::GroupAlgebraElement, Y::GroupAlgebraElement) = add(X,-Y)
|
||||||
|
|
||||||
|
function algebra_multiplication{T<:Number}(X::AbstractVector{T}, Y::AbstractVector{T}, pm::Array{Int,2})
|
||||||
|
result = zeros(X)
|
||||||
|
for (j,y) in enumerate(Y)
|
||||||
|
if y != zero(T)
|
||||||
|
for (i, index) in enumerate(pm[:,j])
|
||||||
|
if X[i] != zero(T)
|
||||||
|
index == 0 && throw(ArgumentError("The product don't seem to belong to the span of basis!"))
|
||||||
|
result[index] += X[i]*y
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return result
|
||||||
|
end
|
||||||
|
|
||||||
|
function group_star_multiplication{T<:Number}(X::GroupAlgebraElement{T},
|
||||||
|
Y::GroupAlgebraElement{T})
|
||||||
|
X.product_matrix == Y.product_matrix || ArgumentError(
|
||||||
|
"Elements don't seem to belong to the same Group Algebra!")
|
||||||
|
result = algebra_multiplication(X.coefficients, Y.coefficients, X.product_matrix)
|
||||||
|
return GroupAlgebraElement(result, X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
function group_star_multiplication{T<:Number, S<:Number}(
|
||||||
|
X::GroupAlgebraElement{T},
|
||||||
|
Y::GroupAlgebraElement{S})
|
||||||
|
S == T || warn("Multiplying elements with different base rings!")
|
||||||
|
return group_star_multiplication(promote(X,Y)...)
|
||||||
|
end
|
||||||
|
|
||||||
|
(*){T<:Number, S<:Number}(X::GroupAlgebraElement{T},
|
||||||
|
Y::GroupAlgebraElement{S}) = group_star_multiplication(X,Y);
|
||||||
|
|
||||||
|
(*){T<:Number}(a::T, X::GroupAlgebraElement{T}) = GroupAlgebraElement(
|
||||||
|
a*X.coefficients, X.product_matrix)
|
||||||
|
|
||||||
|
function scalar_multiplication{T<:Number, S<:Number}(a::T,
|
||||||
|
X::GroupAlgebraElement{S})
|
||||||
|
promote_type(T,S) == S || warn("Scalar and coefficients are in different rings! Promoting result to $(promote_type(T,S))")
|
||||||
|
return GroupAlgebraElement(a*X.coefficients, X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
(*){T<:Number}(a::T,X::GroupAlgebraElement) = scalar_multiplication(a, X)
|
||||||
|
|
||||||
|
//{T<:Rational, S<:Rational}(X::GroupAlgebraElement{T}, a::S) =
|
||||||
|
GroupAlgebraElement(X.coefficients//a, X.product_matrix)
|
||||||
|
|
||||||
|
//{T<:Rational, S<:Integer}(X::GroupAlgebraElement{T}, a::S) =
|
||||||
|
X//convert(T,a)
|
||||||
|
|
||||||
|
length(X::GroupAlgebraElement) = length(X.coefficients)
|
||||||
|
size(X::GroupAlgebraElement) = size(X.coefficients)
|
||||||
|
|
||||||
|
function norm(X::GroupAlgebraElement, p=2)
|
||||||
|
if p == 1
|
||||||
|
return sum(abs(X.coefficients))
|
||||||
|
elseif p == Inf
|
||||||
|
return max(abs(X.coefficients))
|
||||||
|
else
|
||||||
|
return norm(X.coefficients, p)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
ɛ(X::GroupAlgebraElement) = sum(X.coefficients)
|
||||||
|
|
||||||
|
function rationalize{T<:Integer, S<:Number}(
|
||||||
|
::Type{T}, X::GroupAlgebraElement{S}; tol=eps(S))
|
||||||
|
v = rationalize(T, X.coefficients, tol=tol)
|
||||||
|
return GroupAlgebraElement(v, X.product_matrix)
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
142
SL3Z.jl
Normal file
142
SL3Z.jl
Normal file
@ -0,0 +1,142 @@
|
|||||||
|
using JLD
|
||||||
|
using JuMP
|
||||||
|
import Primes: isprime
|
||||||
|
import SCS: SCSSolver
|
||||||
|
import Mosek: MosekSolver
|
||||||
|
|
||||||
|
using Mods
|
||||||
|
|
||||||
|
using Groups
|
||||||
|
|
||||||
|
function SL_generatingset(n::Int)
|
||||||
|
|
||||||
|
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||||
|
|
||||||
|
S = [E(i,j,N=n) for (i,j) in indexing];
|
||||||
|
S = vcat(S, [convert(Array{Int,2},x') for x in S]);
|
||||||
|
S = vcat(S, [convert(Array{Int,2},inv(x)) for x in S]);
|
||||||
|
return unique(S)
|
||||||
|
end
|
||||||
|
|
||||||
|
function E(i::Int, j::Int; val=1, N::Int=3, mod=Inf)
|
||||||
|
@assert i≠j
|
||||||
|
m = eye(Int, N)
|
||||||
|
m[i,j] = val
|
||||||
|
if mod == Inf
|
||||||
|
return m
|
||||||
|
else
|
||||||
|
return [Mod(x,mod) for x in m]
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function cofactor(i,j,M)
|
||||||
|
z1 = ones(Bool,size(M,1))
|
||||||
|
z1[i] = false
|
||||||
|
|
||||||
|
z2 = ones(Bool,size(M,2))
|
||||||
|
z2[j] = false
|
||||||
|
|
||||||
|
return M[z1,z2]
|
||||||
|
end
|
||||||
|
|
||||||
|
import Base.LinAlg.det
|
||||||
|
|
||||||
|
function det(M::Array{Mod,2})
|
||||||
|
if size(M,1) ≠ size(M,2)
|
||||||
|
d = Mod(0,M[1,1].mod)
|
||||||
|
elseif size(M,1) == 2
|
||||||
|
d = M[1,1]*M[2,2] - M[1,2]*M[2,1]
|
||||||
|
else
|
||||||
|
d = zero(eltype(M))
|
||||||
|
for i in 1:size(M,1)
|
||||||
|
d += (-1)^(i+1)*M[i,1]*det(cofactor(i,1,M))
|
||||||
|
end
|
||||||
|
end
|
||||||
|
# @show (M, d)
|
||||||
|
return d
|
||||||
|
end
|
||||||
|
|
||||||
|
function adjugate(M)
|
||||||
|
K = similar(M)
|
||||||
|
for i in 1:size(M,1), j in 1:size(M,2)
|
||||||
|
K[j,i] = (-1)^(i+j)*det(cofactor(i,j,M))
|
||||||
|
end
|
||||||
|
return K
|
||||||
|
end
|
||||||
|
|
||||||
|
import Base: inv, one, zero, *
|
||||||
|
|
||||||
|
one(::Type{Mod}) = 1
|
||||||
|
zero(::Type{Mod}) = 0
|
||||||
|
zero(x::Mod) = Mod(x.mod)
|
||||||
|
|
||||||
|
function inv(M::Array{Mod,2})
|
||||||
|
d = det(M)
|
||||||
|
d ≠ 0*d || thow(ArgumentError("Matrix is not invertible!"))
|
||||||
|
return inv(det(M))*adjugate(M)
|
||||||
|
return adjugate(M)
|
||||||
|
end
|
||||||
|
|
||||||
|
function SL_generatingset(n::Int, p::Int)
|
||||||
|
(p > 1 && n > 1) || throw(ArgumentError("Both n and p should be integers!"))
|
||||||
|
isprime(p) || throw(ArgumentError("p should be a prime number!"))
|
||||||
|
|
||||||
|
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||||
|
S = [E(i,j, N=n, mod=p) for (i,j) in indexing]
|
||||||
|
S = vcat(S, [inv(s) for s in S])
|
||||||
|
S = vcat(S, [permutedims(x, [2,1]) for x in S]);
|
||||||
|
|
||||||
|
return unique(S)
|
||||||
|
end
|
||||||
|
|
||||||
|
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})
|
||||||
|
result = Vector{T}()
|
||||||
|
for u in U
|
||||||
|
for v in V
|
||||||
|
push!(result, u*v)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return unique(result)
|
||||||
|
end
|
||||||
|
|
||||||
|
function ΔandSDPconstraints(identity, S)
|
||||||
|
B₁ = vcat([identity], S)
|
||||||
|
B₂ = products(B₁, B₁);
|
||||||
|
B₃ = products(B₁, B₂);
|
||||||
|
B₄ = products(B₁, B₃);
|
||||||
|
@assert B₄[1:length(B₂)] == B₂
|
||||||
|
|
||||||
|
product_matrix = create_product_matrix(B₄,length(B₂));
|
||||||
|
sdp_constraints = constraints_from_pm(product_matrix, length(B₄))
|
||||||
|
L_coeff = splaplacian_coeff(S, B₂, length(B₄));
|
||||||
|
Δ = GroupAlgebraElement(L_coeff, product_matrix)
|
||||||
|
|
||||||
|
return Δ, sdp_constraints
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@everywhere push!(LOAD_PATH, "./")
|
||||||
|
using GroupAlgebras
|
||||||
|
include("property(T).jl")
|
||||||
|
|
||||||
|
const N = 3
|
||||||
|
|
||||||
|
const name = "SL$(N)Z"
|
||||||
|
const ID = eye(Int, N)
|
||||||
|
S() = SL_generatingset(N)
|
||||||
|
const upper_bound=0.27
|
||||||
|
|
||||||
|
|
||||||
|
# const p = 7
|
||||||
|
# const upper_bound=0.738 # (N,p) = (3,7)
|
||||||
|
|
||||||
|
# const name = "SL($N,$p)"
|
||||||
|
# const ID = [Mod(x,p) for x in eye(Int,N)]
|
||||||
|
# S() = SL_generatingset(N, p)
|
||||||
|
|
||||||
|
BLAS.set_num_threads(4)
|
||||||
|
@time check_property_T(name, ID, S; verbose=true, tol=1e-10, upper_bound=upper_bound)
|
Loading…
Reference in New Issue
Block a user