update SL.jl
This commit is contained in:
parent
a28df98741
commit
8a022c03e0
112
SL.jl
112
SL.jl
@ -5,41 +5,57 @@ import SCS.SCSSolver
|
||||
using PropertyT
|
||||
|
||||
|
||||
function E(i::Int, j::Int, M::Nemo.MatSpace)
|
||||
###############################################################################
|
||||
#
|
||||
# Generating set
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function E(i::Int, j::Int, M::MatSpace, val=one(M.base_ring))
|
||||
@assert i≠j
|
||||
m = one(M)
|
||||
m[i,j] = m[1,1]
|
||||
m[i,j] = val
|
||||
return m
|
||||
end
|
||||
|
||||
function SL_generatingset(n::Int)
|
||||
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||
G = Nemo.MatrixSpace(Nemo.ZZ, n,n)
|
||||
S = [E(i,j,G) for (i,j) in indexing];
|
||||
S = vcat(S, [transpose(x) for x in S]);
|
||||
return unique(S)
|
||||
end
|
||||
|
||||
function SLsize(n,p)
|
||||
result = 1
|
||||
result = BigInt(1)
|
||||
for k in 0:n-1
|
||||
result *= p^n - p^k
|
||||
end
|
||||
return div(result, p-1)
|
||||
end
|
||||
|
||||
function SL_generatingset(n::Int, p::Int)
|
||||
p == 0 && return SL_generatingset(n)
|
||||
(p > 1 && n > 0) || throw(ArgumentError("Both n and p should be positive integers!"))
|
||||
println("Size(SL($n,$p)) = $(SLsize(n,p))")
|
||||
F = Nemo.ResidueRing(Nemo.ZZ, p)
|
||||
G = Nemo.MatrixSpace(F, n,n)
|
||||
function SL_generatingset(n::Int, X::Bool=false)
|
||||
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||
G = MatrixSpace(ZZ, n, n)
|
||||
if X
|
||||
S = [E(i,j,G,v) for (i,j) in indexing for v in [1, 100]]
|
||||
else
|
||||
S = [E(i,j,G,v) for (i,j) in indexing for v in [1]]
|
||||
end
|
||||
S = vcat(S, [inv(x) for x in S])
|
||||
return G, unique(S)
|
||||
end
|
||||
|
||||
function SL_generatingset(n::Int, p::Int, X::Bool=false)
|
||||
p == 0 && return SL_generatingset(n, X)
|
||||
(p > 1 && n > 1) || throw("Both n and p should be positive integers!")
|
||||
info("Size(SL($n,$p)) = $(SLsize(n,p))")
|
||||
F = ResidueRing(ZZ, p)
|
||||
G = MatrixSpace(F, n, n)
|
||||
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||||
S = [E(i, j, G) for (i,j) in indexing]
|
||||
S = vcat(S, [transpose(x) for x in S])
|
||||
return unique(S)
|
||||
S = vcat(S, [inv(x) for x in S])
|
||||
return G, unique(S)
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Parsing command line
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function cpuinfo_physicalcores()
|
||||
maxcore = -1
|
||||
for line in eachline("/proc/cpuinfo")
|
||||
@ -52,40 +68,40 @@ function cpuinfo_physicalcores()
|
||||
end
|
||||
|
||||
function parse_commandline()
|
||||
s = ArgParseSettings()
|
||||
settings = ArgParseSettings()
|
||||
|
||||
@add_arg_table s begin
|
||||
@add_arg_table settings begin
|
||||
"--tol"
|
||||
help = "set numerical tolerance for the SDP solver (default: 1e-5)"
|
||||
help = "set numerical tolerance for the SDP solver"
|
||||
arg_type = Float64
|
||||
default = 1e-5
|
||||
default = 1e-6
|
||||
"--iterations"
|
||||
help = "set maximal number of iterations for the SDP solver (default: 20000)"
|
||||
arg_type = Int
|
||||
default = 20000
|
||||
default = 50000
|
||||
"--upper-bound"
|
||||
help = "Set an upper bound for the spectral gap (default: Inf)"
|
||||
help = "Set an upper bound for the spectral gap"
|
||||
arg_type = Float64
|
||||
default = Inf
|
||||
"--cpus"
|
||||
help = "Set number of cpus used by solver (default: auto)"
|
||||
help = "Set number of cpus used by solver"
|
||||
arg_type = Int
|
||||
required = false
|
||||
"-N"
|
||||
help = "Consider matrices of size N (default: N=3)"
|
||||
help = "Consider elementary matrices EL(N)"
|
||||
arg_type = Int
|
||||
default = 3
|
||||
default = 2
|
||||
"-p"
|
||||
help = "Matrices over filed of p-elements (default: p=0 => over ZZ)"
|
||||
help = "Matrices over field of p-elements (p=0 => over ZZ)"
|
||||
arg_type = Int
|
||||
default = 0
|
||||
"--radius"
|
||||
help = "Find the decomposition over B_r(e,S)"
|
||||
help = "Radius of ball B_r(e,S) to find solution over"
|
||||
arg_type = Int
|
||||
default = 2
|
||||
end
|
||||
|
||||
return parse_args(s)
|
||||
return parse_args(settings)
|
||||
end
|
||||
|
||||
function main()
|
||||
@ -95,40 +111,40 @@ function main()
|
||||
if parsed_args["cpus"] > cpuinfo_physicalcores()
|
||||
warn("Number of specified cores exceeds the physical core cound. Performance will suffer.")
|
||||
end
|
||||
Blas.set_num_threads(parsed_args["cpus"])
|
||||
BLAS.set_num_threads(parsed_args["cpus"])
|
||||
end
|
||||
|
||||
tol = parsed_args["tol"]
|
||||
iterations = parsed_args["iterations"]
|
||||
|
||||
solver = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct)
|
||||
|
||||
N = parsed_args["N"]
|
||||
upper_bound = parsed_args["upper-bound"]
|
||||
p = parsed_args["p"]
|
||||
|
||||
if p == 0
|
||||
name = "SL$(N)Z"
|
||||
dirname = "SL$(N)Z"
|
||||
else
|
||||
name = "SL$(N)_$p"
|
||||
dirname = "SL$(N)_$p"
|
||||
end
|
||||
|
||||
radius = parsed_args["radius"]
|
||||
radius = parsed_args["radius"]
|
||||
tol = parsed_args["tol"]
|
||||
iterations = parsed_args["iterations"]
|
||||
upper_bound = parsed_args["upper-bound"]
|
||||
|
||||
name = "$(name)_$(upper_bound)_r=$radius"
|
||||
dirname = "$(dirname)_$(upper_bound)_r=$radius"
|
||||
|
||||
logger = PropertyT.setup_logging(name)
|
||||
logger = PropertyT.setup_logging(dirname)
|
||||
|
||||
info(logger, "Group: $name")
|
||||
info(logger, "Group: $dirname")
|
||||
info(logger, "Iterations: $iterations")
|
||||
info(logger, "Precision: $tol")
|
||||
info(logger, "Upper bound: $upper_bound")
|
||||
|
||||
S = SL_generatingset(N, p)
|
||||
S = unique([S; [inv(s) for s in S]])
|
||||
Id = one(parent(S[1]))
|
||||
G, S = SL_generatingset(N, p)
|
||||
info(logger, G)
|
||||
info(logger, "Symmetric generating set of size $(length(S))")
|
||||
Id = one(G)
|
||||
|
||||
@time PropertyT.check_property_T(name, S, Id, solver, upper_bound, tol, radius)
|
||||
solver = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct)
|
||||
|
||||
@time PropertyT.check_property_T(dirname, S, Id, solver, upper_bound, tol, radius)
|
||||
return 0
|
||||
end
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user