remove old AutF4.jl
This commit is contained in:
parent
5fa9c26475
commit
9d33d28bd6
120
AutF4.jl
120
AutF4.jl
@ -1,120 +0,0 @@
|
|||||||
using Combinatorics
|
|
||||||
|
|
||||||
using JuMP
|
|
||||||
import SCS: SCSSolver
|
|
||||||
import Mosek: MosekSolver
|
|
||||||
|
|
||||||
push!(LOAD_PATH, "./")
|
|
||||||
using SemiDirectProduct
|
|
||||||
using GroupAlgebras
|
|
||||||
include("property(T).jl")
|
|
||||||
|
|
||||||
const N = 4
|
|
||||||
|
|
||||||
const VERBOSE = true
|
|
||||||
|
|
||||||
function permutation_matrix(p::Vector{Int})
|
|
||||||
n = length(p)
|
|
||||||
sort(p) == collect(1:n) || throw(ArgumentError("Input array must be a permutation of 1:n"))
|
|
||||||
A = eye(n)
|
|
||||||
return A[p,:]
|
|
||||||
end
|
|
||||||
|
|
||||||
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
|
|
||||||
|
|
||||||
# const SymmetricGroup = [permutation_matrix(x) for x in SymmetricGroup_perms]
|
|
||||||
|
|
||||||
function E(i, j; dim::Int=N)
|
|
||||||
@assert i≠j
|
|
||||||
k = eye(dim)
|
|
||||||
k[i,j] = 1
|
|
||||||
return k
|
|
||||||
end
|
|
||||||
|
|
||||||
function eltary_basis_vector(i; dim::Int=N)
|
|
||||||
result = zeros(dim)
|
|
||||||
if 0 < i ≤ dim
|
|
||||||
result[i] = 1
|
|
||||||
end
|
|
||||||
return result
|
|
||||||
end
|
|
||||||
|
|
||||||
v(i; dim=N) = eltary_basis_vector(i,dim=dim)
|
|
||||||
|
|
||||||
ϱ(i,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), v(j,dim=n))
|
|
||||||
λ(i,j::Int,n=N) = SemiDirectProductElement(E(i,j,dim=n), -v(j,dim=n))
|
|
||||||
|
|
||||||
function ɛ(i, n::Int=N)
|
|
||||||
result = eye(n)
|
|
||||||
result[i,i] = -1
|
|
||||||
return SemiDirectProductElement(result)
|
|
||||||
end
|
|
||||||
|
|
||||||
σ(permutation::Vector{Int}) =
|
|
||||||
SemiDirectProductElement(permutation_matrix(permutation))
|
|
||||||
|
|
||||||
# Standard generating set: 103 elements
|
|
||||||
|
|
||||||
function generatingset_ofAutF(n::Int=N)
|
|
||||||
indexing = [[i,j] for i in 1:n for j in 1:n if i≠j]
|
|
||||||
ϱs = [ϱ(ij...) for ij in indexing]
|
|
||||||
λs = [λ(ij...) for ij in indexing]
|
|
||||||
ɛs = [ɛ(i) for i in 1:N]
|
|
||||||
σs = [σ(perm) for perm in SymmetricGroup(n)]
|
|
||||||
S = vcat(ϱs, λs, ɛs, σs);
|
|
||||||
S = unique(vcat(S, [inv(x) for x in S]));
|
|
||||||
return S
|
|
||||||
end
|
|
||||||
|
|
||||||
#=
|
|
||||||
Note that the element
|
|
||||||
α(i,j,k) = ϱ(i,j)*ϱ(i,k)*inv(ϱ(i,j))*inv(ϱ(i,k)),
|
|
||||||
which surely belongs to ball of radius 4 in Aut(F₄) becomes trivial under the representation
|
|
||||||
Aut(F₄) → GL₄(ℤ)⋉ℤ⁴ → GL₅(ℂ).
|
|
||||||
Moreover, due to work of Potapchik and Rapinchuk [1] every real representation of Aut(Fₙ) into GLₘ(ℂ) (for m ≤ 2n-2) factors through GLₙ(ℤ)⋉ℤⁿ, so will have the same problem.
|
|
||||||
|
|
||||||
We need a different approach!
|
|
||||||
=#
|
|
||||||
|
|
||||||
const ID = eye(N+1)
|
|
||||||
|
|
||||||
const S₁ = generatingset_ofAutF(N)
|
|
||||||
|
|
||||||
matrix_S₁ = [matrix_repr(x) for x in S₁]
|
|
||||||
|
|
||||||
const TOL=10.0^-7
|
|
||||||
|
|
||||||
matrix_S₁[1:10,:][:,1]
|
|
||||||
|
|
||||||
Δ, cm = prepare_Laplacian_and_constraints(matrix_S₁)
|
|
||||||
|
|
||||||
#solver = SCSSolver(eps=TOL, max_iters=ITERATIONS, verbose=true);
|
|
||||||
solver = MosekSolver(MSK_DPAR_INTPNT_CO_TOL_REL_GAP=TOL,
|
|
||||||
# MSK_DPAR_INTPNT_CO_TOL_PFEAS=1e-15,
|
|
||||||
# MSK_DPAR_INTPNT_CO_TOL_DFEAS=1e-15,
|
|
||||||
# MSK_IPAR_PRESOLVE_USE=0,
|
|
||||||
QUIET=!VERBOSE)
|
|
||||||
|
|
||||||
# κ, A = solve_for_property_T(S₁, solver, verbose=VERBOSE)
|
|
||||||
|
|
||||||
product_matrix = readdlm("SL₃Z.product_matrix", Int)
|
|
||||||
L = readdlm("SL₃Z.Δ.coefficients")[:, 1]
|
|
||||||
Δ = GroupAlgebraElement(L, product_matrix)
|
|
||||||
|
|
||||||
A = readdlm("matrix.A.Mosek")
|
|
||||||
κ = readdlm("kappa.Mosek")[1]
|
|
||||||
|
|
||||||
# @show eigvals(A)
|
|
||||||
@assert isapprox(eigvals(A), abs(eigvals(A)), atol=TOL)
|
|
||||||
@assert A == Symmetric(A)
|
|
||||||
|
|
||||||
|
|
||||||
const A_sqrt = real(sqrtm(A))
|
|
||||||
|
|
||||||
SOS_EOI_fp_L₁, Ω_fp_dist = check_solution(κ, A_sqrt, Δ)
|
|
||||||
|
|
||||||
κ_rational = rationalize(BigInt, κ;)
|
|
||||||
A_sqrt_rational = rationalize(BigInt, A_sqrt)
|
|
||||||
Δ_rational = rationalize(BigInt, Δ)
|
|
||||||
|
|
||||||
SOS_EOI_rat_L₁, Ω_rat_dist = check_solution(κ_rational, A_sqrt_rational, Δ_rational)
|
|
Loading…
Reference in New Issue
Block a user