split definitions of action to a separate file
This commit is contained in:
parent
bf8fc67bb4
commit
c075b93313
@ -4,6 +4,7 @@ using PropertyT
|
|||||||
using AbstractAlgebra
|
using AbstractAlgebra
|
||||||
using Nemo
|
using Nemo
|
||||||
using Groups
|
using Groups
|
||||||
|
using GroupRings
|
||||||
|
|
||||||
export PropertyTGroup, SymmetrizedGroup, GAPGroup,
|
export PropertyTGroup, SymmetrizedGroup, GAPGroup,
|
||||||
SpecialLinearGroup,
|
SpecialLinearGroup,
|
||||||
@ -50,5 +51,6 @@ end
|
|||||||
include("mappingclassgroup.jl")
|
include("mappingclassgroup.jl")
|
||||||
include("higman.jl")
|
include("higman.jl")
|
||||||
include("caprace.jl")
|
include("caprace.jl")
|
||||||
|
include("actions.jl")
|
||||||
|
|
||||||
end # of module PropertyTGroups
|
end # of module PropertyTGroups
|
||||||
|
92
groups/actions.jl
Normal file
92
groups/actions.jl
Normal file
@ -0,0 +1,92 @@
|
|||||||
|
function (p::perm)(A::GroupRingElem)
|
||||||
|
RG = parent(A)
|
||||||
|
result = zero(RG, eltype(A.coeffs))
|
||||||
|
|
||||||
|
for (idx, c) in enumerate(A.coeffs)
|
||||||
|
if c!= zero(eltype(A.coeffs))
|
||||||
|
result[p(RG.basis[idx])] = c
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return result
|
||||||
|
end
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#
|
||||||
|
# Action of WreathProductElems on Nemo.MatElem
|
||||||
|
#
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
function matrix_emb(n::DirectProductGroupElem, p::perm)
|
||||||
|
Id = parent(n.elts[1])()
|
||||||
|
elt = diagm([(-1)^(el == Id ? 0 : 1) for el in n.elts])
|
||||||
|
return elt[:, p.d]
|
||||||
|
end
|
||||||
|
|
||||||
|
function (g::WreathProductElem)(A::MatElem)
|
||||||
|
g_inv = inv(g)
|
||||||
|
G = matrix_emb(g.n, g_inv.p)
|
||||||
|
G_inv = matrix_emb(g_inv.n, g.p)
|
||||||
|
M = parent(A)
|
||||||
|
return M(G)*A*M(G_inv)
|
||||||
|
end
|
||||||
|
|
||||||
|
import Base.*
|
||||||
|
|
||||||
|
doc"""
|
||||||
|
*(x::AbstractAlgebra.MatElem, P::Generic.perm)
|
||||||
|
> Apply the pemutation $P$ to the rows of the matrix $x$ and return the result.
|
||||||
|
"""
|
||||||
|
function *(x::AbstractAlgebra.MatElem, P::Generic.perm)
|
||||||
|
z = similar(x)
|
||||||
|
m = rows(x)
|
||||||
|
n = cols(x)
|
||||||
|
for i = 1:m
|
||||||
|
for j = 1:n
|
||||||
|
z[i, j] = x[i,P[j]]
|
||||||
|
end
|
||||||
|
end
|
||||||
|
return z
|
||||||
|
end
|
||||||
|
|
||||||
|
function (p::perm)(A::MatElem)
|
||||||
|
length(p.d) == A.r == A.c || throw("Can't act via $p on matrix of size ($(A.r), $(A.c))")
|
||||||
|
return p*A*inv(p)
|
||||||
|
end
|
||||||
|
|
||||||
|
###############################################################################
|
||||||
|
#
|
||||||
|
# Action of WreathProductElems on AutGroupElem
|
||||||
|
#
|
||||||
|
###############################################################################
|
||||||
|
|
||||||
|
function AutFG_emb(A::AutGroup, g::WreathProductElem)
|
||||||
|
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
|
||||||
|
parent(g).P.n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A")
|
||||||
|
elt = A()
|
||||||
|
Id = parent(g.n.elts[1])()
|
||||||
|
flips = Groups.AutSymbol[Groups.flip_autsymbol(i) for i in 1:length(g.p.d) if g.n.elts[i] != Id]
|
||||||
|
Groups.r_multiply!(elt, flips, reduced=false)
|
||||||
|
Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)])
|
||||||
|
return elt
|
||||||
|
end
|
||||||
|
|
||||||
|
function AutFG_emb(A::AutGroup, p::perm)
|
||||||
|
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
|
||||||
|
parent(p).n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(p)) into $A")
|
||||||
|
return A(Groups.perm_autsymbol(p))
|
||||||
|
end
|
||||||
|
|
||||||
|
function (g::WreathProductElem)(a::Groups.Automorphism)
|
||||||
|
A = parent(a)
|
||||||
|
g = AutFG_emb(A,g)
|
||||||
|
res = A()
|
||||||
|
Groups.r_multiply!(res, g.symbols, reduced=false)
|
||||||
|
Groups.r_multiply!(res, a.symbols, reduced=false)
|
||||||
|
Groups.r_multiply!(res, [inv(s) for s in reverse!(g.symbols)])
|
||||||
|
return res
|
||||||
|
end
|
||||||
|
|
||||||
|
function (p::perm)(a::Groups.Automorphism)
|
||||||
|
g = AutFG_emb(parent(a),p)
|
||||||
|
return g*a*inv(g)
|
||||||
|
end
|
@ -19,41 +19,3 @@ end
|
|||||||
function autS(G::SpecialAutomorphismGroup{N}) where N
|
function autS(G::SpecialAutomorphismGroup{N}) where N
|
||||||
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
||||||
end
|
end
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# Action of WreathProductElems on AutGroupElem
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
function AutFG_emb(A::AutGroup, g::WreathProductElem)
|
|
||||||
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
|
|
||||||
parent(g).P.n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A")
|
|
||||||
elt = A()
|
|
||||||
Id = parent(g.n.elts[1])()
|
|
||||||
flips = Groups.AutSymbol[Groups.flip_autsymbol(i) for i in 1:length(g.p.d) if g.n.elts[i] != Id]
|
|
||||||
Groups.r_multiply!(elt, flips, reduced=false)
|
|
||||||
Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)])
|
|
||||||
return elt
|
|
||||||
end
|
|
||||||
|
|
||||||
function AutFG_emb(A::AutGroup, p::perm)
|
|
||||||
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
|
|
||||||
parent(p).n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A")
|
|
||||||
return A(Groups.perm_autsymbol(p))
|
|
||||||
end
|
|
||||||
|
|
||||||
function (g::WreathProductElem)(a::Groups.Automorphism)
|
|
||||||
A = parent(a)
|
|
||||||
g = AutFG_emb(A,g)
|
|
||||||
res = A()
|
|
||||||
Groups.r_multiply!(res, g.symbols, reduced=false)
|
|
||||||
Groups.r_multiply!(res, a.symbols, reduced=false)
|
|
||||||
Groups.r_multiply!(res, [inv(s) for s in reverse!(g.symbols)])
|
|
||||||
return res
|
|
||||||
end
|
|
||||||
|
|
||||||
function (p::perm)(a::Groups.Automorphism)
|
|
||||||
g = AutFG_emb(parent(a),p)
|
|
||||||
return g*a*inv(g)
|
|
||||||
end
|
|
||||||
|
@ -60,46 +60,3 @@ end
|
|||||||
function autS(G::SpecialLinearGroup{N}) where N
|
function autS(G::SpecialLinearGroup{N}) where N
|
||||||
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
||||||
end
|
end
|
||||||
|
|
||||||
###############################################################################
|
|
||||||
#
|
|
||||||
# Action of WreathProductElems on Nemo.MatElem
|
|
||||||
#
|
|
||||||
###############################################################################
|
|
||||||
|
|
||||||
function matrix_emb(n::DirectProductGroupElem, p::perm)
|
|
||||||
Id = parent(n.elts[1])()
|
|
||||||
elt = diagm([(-1)^(el == Id ? 0 : 1) for el in n.elts])
|
|
||||||
return elt[:, p.d]
|
|
||||||
end
|
|
||||||
|
|
||||||
function (g::WreathProductElem)(A::MatElem)
|
|
||||||
g_inv = inv(g)
|
|
||||||
G = matrix_emb(g.n, g_inv.p)
|
|
||||||
G_inv = matrix_emb(g_inv.n, g.p)
|
|
||||||
M = parent(A)
|
|
||||||
return M(G)*A*M(G_inv)
|
|
||||||
end
|
|
||||||
|
|
||||||
import Base.*
|
|
||||||
|
|
||||||
doc"""
|
|
||||||
*(x::AbstractAlgebra.MatElem, P::Generic.perm)
|
|
||||||
> Apply the pemutation $P$ to the rows of the matrix $x$ and return the result.
|
|
||||||
"""
|
|
||||||
function *(x::AbstractAlgebra.MatElem, P::Generic.perm)
|
|
||||||
z = similar(x)
|
|
||||||
m = rows(x)
|
|
||||||
n = cols(x)
|
|
||||||
for i = 1:m
|
|
||||||
for j = 1:n
|
|
||||||
z[i, j] = x[i,P[j]]
|
|
||||||
end
|
|
||||||
end
|
|
||||||
return z
|
|
||||||
end
|
|
||||||
|
|
||||||
function (p::perm)(A::MatElem)
|
|
||||||
length(p.d) == A.r == A.c || throw("Can't act via $p on matrix of size ($(A.r), $(A.c))")
|
|
||||||
return p*A*inv(p)
|
|
||||||
end
|
|
||||||
|
Loading…
Reference in New Issue
Block a user