This commit is contained in:
kalmarek 2018-01-04 22:08:32 +01:00
parent 9cc5bcfc00
commit cb16c78690
1 changed files with 163 additions and 86 deletions

249
MCG.jl
View File

@ -1,110 +1,187 @@
using ArgParse
using JLD
using Nemo
import SCS.SCSSolver
using PropertyT
using Groups
function cpuinfo_physicalcores()
maxcore = -1
for line in eachline("/proc/cpuinfo")
if startswith(line, "core id")
maxcore = max(maxcore, parse(Int, split(line, ':')[2]))
end
end
maxcore < 0 && error("failure to read core ids from /proc/cpuinfo")
return maxcore + 1
end
function parse_commandline()
args = ArgParseSettings()
@add_arg_table args begin
"--tol"
help = "set numerical tolerance for the SDP solver"
arg_type = Float64
default = 1e-14
"--iterations"
help = "set maximal number of iterations for the SDP solver (default: 20000)"
arg_type = Int
default = 60000
"--upper-bound"
help = "Set an upper bound for the spectral gap"
arg_type = Float64
default = Inf
"--cpus"
help = "Set number of cpus used by solver (default: auto)"
arg_type = Int
required = false
"-N"
help = "Consider mapping class group of surface of genus N"
arg_type = Int
default = 2
"--radius"
help = "Radius of ball B_r(e,S) to find solution over"
arg_type = Int
default = 4
"--warmstart"
help = "Use warmstart.jl as the initial guess for SCS"
action = :store_true
end
@add_arg_table args begin
"--tol"
help = "set numerical tolerance for the SDP solver"
arg_type = Float64
default = 1e-14
"--iterations"
help = "set maximal number of iterations for the SDP solver (default: 20000)"
arg_type = Int
default = 60000
"--upper-bound"
help = "Set an upper bound for the spectral gap"
arg_type = Float64
default = Inf
"--cpus"
help = "Set number of cpus used by solver (default: auto)"
arg_type = Int
required = false
"-N"
help = "Consider mapping class group of surface of genus N"
arg_type = Int
default = 2
"--radius"
help = "Radius of ball B_r(e,S) to find solution over"
arg_type = Int
default = 4
"--warmstart"
help = "Use warmstart.jl as the initial guess for SCS"
action = :store_true
end
return parse_args(args)
return parse_args(args)
end
const PARSEDARGS = parse_commandline()
include("CPUselect.jl")
# set_parallel_mthread(PARSEDARGS, workers=true)
include("FPGroups_GAP.jl")
include("CPUselect.jl")
function main()
module MCGrps
parsed_args = parse_commandline()
set_parallel_mthread(parsed_args)
using Groups
using Nemo
tol = parsed_args["tol"]
iterations = parsed_args["iterations"]
upper_bound = parsed_args["upper-bound"]
radius = parsed_args["radius"]
N = parsed_args["N"]
Comm(x,y) = x*y*x^-1*y^-1
prefix = "MCG($N)"
name = "$(prefix)"
function Group(N::Int)
if N == 2
MCGroup = Groups.FPGroup(["a1","a2","a3","a4","a5"]);
S = Nemo.gens(MCGroup)
isdir(name) || mkdir(name)
N = length(S)
A = prod(reverse(S))*prod(S)
prepare_pm_delta(prefix, name, radius)
relations = [
[Comm(S[i], S[j]) for i in 1:N for j in 1:N if abs(i-j) > 1]...,
[S[i]*S[i+1]*S[i]*inv(S[i+1]*S[i]*S[i+1]) for i in 1:N-1]...,
(S[1]*S[2]*S[3])^4*inv(S[5])^2,
Comm(A, S[1]),
A^2
]
logger = PropertyT.setup_logging(name)
relations = [relations; [inv(rel) for rel in relations]]
Groups.add_rels!(MCGroup, Dict(rel => MCGroup() for rel in relations))
return MCGroup
info(logger, "Group: $name")
info(logger, "Iterations: $iterations")
info(logger, "Precision: $tol")
info(logger, "Upper bound: $upper_bound")
elseif N < 2
throw("Genus must be at least 2!")
end
MCGroup = Groups.FPGroup(["a1","a2","a3","a4", "a5"]);
S = Nemo.gens(MCGroup)
Comm(x,y) = x*y*x^-1*y^-1
k = length(S)
MCGroup = Groups.FPGroup(["a$i" for i in 0:2N])
S = Nemo.gens(MCGroup)
relations = [[Comm(S[i], S[j]) for i in 1:k for j in 1:k if abs(i-j) > 1]...,
[S[i]*S[i+1]*S[i]*inv(S[i+1]*S[i]*S[i+1]) for i in 1:k-1]...,
(S[1]*S[2]*S[3])^4*inv(S[5])^5,
Comm(prod(reverse(S))*prod(S), S[1]),
(prod(reverse(S))*prod(S))^2
];
a0 = S[1]
A = S[2:end]
k = length(A)
relations = [relations; [inv(rel) for rel in relations]]
Groups.add_rels!(MCGroup, Dict(rel => MCGroup() for rel in relations))
relations = [
[Comm(A[i], A[j]) for i in 1:k for j in 1:k if abs(i-j) > 1]...,
[Comm(a0, A[i]) for i in 1:k if i != 4]...,
[A[i]*A[(i+1)]*A[i]*inv(A[i+1]*A[i]*A[i+1]) for i in 1:k-1]...,
A[4]*a0*A[4]*inv(a0*A[4]*a0)
]
S = gens(MCGroup)
S = unique([S; [inv(s) for s in S]])
Id = MCGroup()
solver = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct, alpha=1.9, acceleration_lookback=1)
# 3-chain relation
c = prod(reverse(A[1:4]))*prod(A[1:4])
b0 = c*a0*inv(c)
push!(relations, (A[1]*A[2]*A[3])^4*inv(a0*b0))
@time PropertyT.check_property_T(name, S, Id, solver, upper_bound, tol, radius)
return 0
# Lantern relation
b1 = inv(A[4]*A[5]*A[3]*A[4])*a0*(A[4]*A[5]*A[3]*A[4])
b2 = inv(A[2]*A[3]*A[1]*A[2])*b1*(A[2]*A[3]*A[1]*A[2])
u = inv(A[6]*A[5])*b1*(A[6]*A[5])
x = prod(reverse(A[2:6]))*u*prod(inv.(A[1:4]))
b3 = x*a0*inv(x)
push!(relations, a0*b2*b1*inv(A[1]*A[3]*A[5]*b3))
# Hyperelliptic relation
X = prod(reverse(A))*prod(A)
function n(i::Int, b=b0)
if i == 1
return A[1]
elseif i == 2
return b
else
return w(i-2)*n(i-2)*w(i-2)
end
end
function w(i::Int)
(A[2i+4]*A[2i+3]*A[2i+2]* n(i+1))*(A[2i+1]*A[2i] *A[2i+2]*A[2i+1])*
(A[2i+3]*A[2i+2]*A[2i+4]*A[2i+3])*( n(i+1)*A[2i+2]*A[2i+1]*A[2i] )
end
push!(relations, X*n(N)*inv(n(N)*X))
relations = [relations; [inv(rel) for rel in relations]]
Groups.add_rels!(MCGroup, Dict(rel => MCGroup() for rel in relations))
@show MCGroup
return MCGroup
end
main()
###############################################################################
#
# Misc
#
###############################################################################
function groupname(parsed_args)
N = parsed_args["N"]
return groupname(N), N
end
groupname(N::Int) = "MCG$(N)"
end #of module MCGrps
using SCS.SCSSolver
using PropertyT
function main(GROUP, parsed_args)
radius = parsed_args["radius"]
tol = parsed_args["tol"]
iterations = parsed_args["iterations"]
upper_bound = parsed_args["upper-bound"]
warm = parsed_args["warmstart"]
name, N = GROUP.groupname(parsed_args)
isdir(name) || mkdir(name)
G = GROUP.Group(N)
S = Nemo.gens(G)
relations = [k*inv(v) for (k,v) in G.rels]
prepare_pm_delta(name, GAP_groupcode(S, relations), radius)
S = unique([S; [inv(s) for s in S]])
Id = G()
logger = PropertyT.setup_logging(joinpath(name, "$(upper_bound)"))
info(logger, "Group: $name")
info(logger, "Iterations: $iterations")
info(logger, "Precision: $tol")
info(logger, "Upper bound: $upper_bound")
info(logger, "Radius: $radius")
info(logger, G)
info(logger, "Symmetric generating set of size $(length(S))")
info(logger, "Threads: $(Threads.nthreads())")
info(logger, "Workers: $(workers())")
solver = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct, alpha=1.9, acceleration_lookback=1)
PropertyT.check_property_T(name, S, Id, solver, upper_bound, tol, radius)
return 0
end
main(MCGrps, PARSEDARGS)