using ArgParse ############################################################################### # # Parsing command line # ############################################################################### function parse_commandline() s = ArgParseSettings() @add_arg_table s begin "--tol" help = "set numerical tolerance for the SDP solver" arg_type = Float64 default = 1e-6 "--iterations" help = "set maximal number of iterations for the SDP solver" arg_type = Int default = 50000 "--upper-bound" help = "Set an upper bound for the spectral gap" arg_type = Float64 default = Inf "--cpus" help = "Set number of cpus used by solver (default: auto)" arg_type = Int required = false "--radius" help = "Radius of ball B_r(e,S) to find solution over" arg_type = Int default = 2 "--warmstart" help = "Use warmstart.jld as the initial guess for SCS" action = :store_true "--nosymmetry" help = "Don't use symmetries of the Laplacian" action = :store_true "N" help = "Compute for the automorphisms group of the free group on N generators" arg_type = Int required = true end return parse_args(s) end const PARSEDARGS = parse_commandline() #= Note that the element α(i,j,k) = ϱ(i,j)*ϱ(i,k)*inv(ϱ(i,j))*inv(ϱ(i,k)), which surely belongs to ball of radius 4 in Aut(Fₙ) becomes trivial under the representation Aut(Fₙ) → GLₙ(ℤ)⋉ℤⁿ → GL_(n+1)(ℂ). Moreover, due to work of Potapchik and Rapinchuk [1] every real representation of Aut(Fₙ) into GLₘ(ℂ) (for m ≤ 2n-2) factors through GLₙ(ℤ)⋉ℤⁿ, so will have the same problem. We need a different approach: Here we actually compute in (S)Aut(𝔽ₙ) =# include("CPUselect.jl") set_parallel_mthread(PARSEDARGS, workers=true) include("main.jl") G = PropertyTGroups.SpecialAutomorphismGroup(PARSEDARGS) if PARSEDARGS["nosymmetry"] main(Standard, G) else main(Symmetrize, G) end