push!(LOAD_PATH, "./") using Nemo using Groups using GroupRings using PropertyT import Nemo.elements using JLD include("Projections.jl") ############################################################################### # # Iterator protocol for Nemo.FinField # ############################################################################### type FFEltsIter{T<:Nemo.FinField} all::Int field::T function FFEltsIter(F::T) return new(Int(characteristic(F)^degree(F)), F) end end FFEltsIter{T<:Nemo.FinField}(F::T) = FFEltsIter{T}(F) import Base: start, next, done, eltype, length Base.start(A::FFEltsIter) = (zero(A.field), 0) Base.next(A::FFEltsIter, state) = next_ffelem(state...) Base.done(A::FFEltsIter, state) = state[2] >= A.all Base.eltype(::Type{FFEltsIter}) = elem_type(A.field) Base.length(A::FFEltsIter) = A.all function next_ffelem(f::Nemo.FinFieldElem, c::Int) if c == 0 return (f, (f, 1)) elseif c == 1 f = one(parent(f)) return (f, (f, 2)) else f = gen(parent(f))*f return (f, (f, c+1)) end end import Nemo.elements elements(F::Nemo.FinField) = FFEltsIter(F) ############################################################################### # # Orbit stuff # ############################################################################### function orbit_decomposition(G::Nemo.Group, E::Vector, rdict=GroupRings.reverse_dict(E)) elts = collect(elements(G)) tovisit = trues(E); orbits = Vector{Set{Int}}() for i in 1:endof(E) if tovisit[i] orbit = Set{Int}() a = E[i] for g in elts idx = rdict[g(a)] tovisit[idx] = false push!(orbit,idx) end push!(orbits, orbit) end end return orbits end function orbit_spvector(vect::AbstractVector, orbits) orb_vector = spzeros(length(orbits)) for (i,o) in enumerate(orbits) k = vect[collect(o)] val = k[1] @assert all(k .== val) orb_vector[i] = val end return orb_vector end function orbit_constraint(cnstrs::Vector{Vector{Vector{Int64}}}, n) result = spzeros(n,n) for cnstr in cnstrs for p in cnstr result[p[1],p[2]] += 1.0 end end return 1/length(cnstrs)*result end ############################################################################### # # Matrix- and C*-representations # ############################################################################### function matrix_repr(g::GroupElem, E, E_dict) rep_matrix = spzeros(Int, length(E), length(E)) for (i,e) in enumerate(E) j = E_dict[g(e)] rep_matrix[i,j] = 1 end return rep_matrix end function Cstar_repr(x::GroupRingElem, matrix_reps) res = zeros(matrix_reps[1]) for i in 1:length(parent(x).basis) res += x.coeffs[i]*matrix_reps[i] end return res end function orthSVD(M::AbstractMatrix) M = full(M) fact = svdfact(M) sings = fact[:S] M_rank = sum(fact[:S] .> maximum(size(M))*eps(eltype(fact[:S]))) Ufactor = fact[:U] return Ufactor[:,1:M_rank] end function Uπ_matrices(P_matrices; orth=orthSVD) U_p_matrices = Vector{Array{Float64,2}}() for (i,p_mat) in enumerate(P_matrices) U_p = orth(p_mat) push!(U_p_matrices, U_p) end return U_p_matrices end function compute_orbit_data{T<:GroupElem}(logger, name::String, G::Group, S::Vector{T}, AutS; radius=2) isdir(name) || mkdir(name) info(logger, "Generating ball of radius $(2*radius)") if isa(G, Nemo.Ring) Id = one(G) else Id = G() end @time E4, sizes = Groups.generate_balls(S, Id, radius=2*radius); info(logger, "Balls of sizes $sizes.") info(logger, "Reverse dict") @time E_dict = GroupRings.reverse_dict(E4) info(logger, "Product matrix") @time pm = GroupRings.create_pm(E4, E_dict, sizes[radius], twisted=true) RG = GroupRing(G, E4, E_dict, pm) Δ = PropertyT.splaplacian(RG, S) @assert GroupRings.augmentation(Δ) == 0 save(joinpath(name, "delta.jld"), "Δ", Δ.coeffs) save(joinpath(name, "pm.jld"), "pm", pm) info(logger, "Decomposing E into orbits of $(AutS)") @time orbs = orbit_decomposition(AutS, E4, E_dict) @assert sum(length(o) for o in orbs) == length(E4) save(joinpath(name, "orbits.jld"), "orbits", orbs) info(logger, "Action matrices") E2 = E4[1:sizes[radius]] @time AutS_matrixreps = [matrix_repr(g, E2, E_dict) for g in elements(AutS)] info(logger, "Projections") @time AutS_mps = rankOne_projections(AutS); @time π_E_projections = [Cstar_repr(p, AutS_matrixreps) for p in AutS_mps] info(logger, "Uπs...") @time Uπs = Uπ_matrices(π_E_projections); multiplicities = [size(U,2) for U in Uπs]; info(logger, "multiplicities = $multiplicities") dimensions = [Int(p[AutS()]*Int(order(AutS))) for p in AutS_mps]; info(logger, "dimensions = $dimensions") @assert dot(multiplicities, dimensions) == sizes[radius] save(joinpath(name, "U_pis.jld"), "Uπs", Uπs, "dims", dimensions) return 0 end