push!(LOAD_PATH, "./") using Nemo using Groups using WreathProducts using GroupRings import Nemo.elements using JLD using ProgressMeter function products{T<:GroupElem}(X::AbstractVector{T}, Y::AbstractVector{T}) result = Vector{T}() seen = Set{T}() @showprogress for x in X for y in Y z = x*y if !in(z, seen) push!(seen, z) push!(result, z) end end end return result end function generate_balls{T<:GroupElem}(S::Vector{T}, Id::T; radius=2) sizes = Vector{Int}() S = unshift!(S, Id) B = [Id] for i in 1:radius B = products(B, S); push!(sizes, length(B)) end return B, sizes end function elements(F::Nemo.FqNmodFiniteField) deg = Int(degree(F)) char = Int(characteristic(F)) z = (gen(F)^i for i in 0:deg-1) crtsn_prd = Base.product([0:char-1 for i in 1:deg]...) function _it() for crt in crtsn_prd g = sum([b*a for (a,b) in zip(z,crt)]) produce(g) end end return Task(_it) end function AutFG_emb(A::AutGroup, g::WreathProductElem) isa(A.objectGroup, FreeGroup) || throw("Not an Aut(FN)") parent(g).P.n == length(A.objectGroup.gens) || throw("No natural action of $(parent(g)) on $A") powers = [(elt == parent(elt)() ? 0: 1) for elt in g.n.elts] elt = reduce(*, [A(Groups.flip_autsymbol(i))^pow for (i,pow) in enumerate(powers)]) Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)]) return elt end function (g::WreathProductElem)(a::AutGroupElem) g = AutFG_emb(parent(a),g) return g*a*g^-1 end function orbit_decomposition(G::Nemo.Group, E::Vector, rdict=GroupRings.reverse_dict(E)) elts = collect(elements(G)) tovisit = trues(E); orbits = Vector{Set{Int}}() @showprogress "Orbit decomposition... " for i in 1:endof(E) if tovisit[i] orbit = Set{Int}() a = E[i] for g in elts idx = rdict[g(a)] tovisit[idx] = false push!(orbit,idx) end push!(orbits, orbit) end end return orbits end function matrix_repr(g::WreathProductElem, E, E_dict) rep_matrix = spzeros(Int, length(E), length(E)) for (i,e) in enumerate(E) j = E_dict[g(e)] rep_matrix[i,j] = 1 end return rep_matrix end function action_mreps(G::Nemo.Group, E, E_dict) result = @showprogress [matrix_repr(g, E, E_dict) for g in elements(G)] return result end function chars(G::PermutationGroup) permtype_unsorted(σ::Nemo.perm) = [length(c) for c in cycles(σ)] permtype(σ::Nemo.perm) = sort(permtype_unsorted(σ)) χ_id(σ::Nemo.perm) = 1 χ_sgn(σ::Nemo.perm) = (-1)^parity(σ) function χ_reg(σ::Nemo.perm) fixed_points = countnz([(x == y? 1 : 0) for (x,y) in enumerate(σ.d)]) return fixed_points - 1 end χ_regsgn(σ::Nemo.perm) = (-1)^parity(σ)*χ_reg(σ) function χ_regviaS3(σ::Nemo.perm) @assert parent(σ).n == 4 t = permtype(σ) if t == [1,1,1,1] result = 2 elseif t == [2,2] result = 2 elseif t == [1,3] result = -1 else result = 0 end return result end chars = [χ_id, χ_sgn, χ_regviaS3, χ_reg, χ_regsgn] if G.n == 1 return chars[1:1] elseif G.n == 2 return chars[1:2] elseif G.n == 3 return [chars[1:2]..., chars[4]] elseif G.n == 4 return chars[1:5] else throw("Characters for $G unknown!") end end function epsilon(i, g::DirectProducts.DirectProductGroupElem) return reduce(*, 1, ((-1)^isone(g.elts[j]) for j in 1:i)) end import Base.convert convert(::Type{Int}, x::Nemo.fmpz) = x.d function central_projection(RG::GroupRing, char::Function, T::Type=Rational{Int}) result = RG(T) for g in RG.basis result[g] = char(g) end return convert(T, char(RG.group())//Int(order(RG.group))*result) end function Cstar_repr(x::GroupRingElem, matrix_reps) res = zeros(matrix_reps[1]) for i in 1:length(parent(x).basis) res += x.coeffs[i]*matrix_reps[i] end return res end function rankOne_projections(G::PermutationGroup, T::Type=Rational{Int}) RG = GroupRing(G) projections = [central_projection(RG, χ, T) for χ in chars(G)] if G.n == 1 || G.n == 2 return projections elseif G.n == 3 rankone_projs = [ projections[1], projections[2], 1//2*(one(RG) - RG(RG.group([2,1,3])))*projections[3] ] return rankone_projs elseif G.n == 4 rankone_projs = [ projections[1], projections[2], 1//2*(one(RG) - RG(RG.group([2,1,3,4])))*projections[3], 1//2*(one(RG) - RG(RG.group([2,1,3,4])))*projections[4], 1//2*(one(RG) + RG(RG.group([2,1,3,4])))*projections[5]] return rankone_projs else throw("Rank-one projections for $G unknown!") end end function rankOne_projections(BN::WreathProducts.WreathProduct, T::Type=Rational{Int}) N = BN.P.n # projections as elements of the group rings RSₙ SNprojs_nc = [rankOne_projections(PermutationGroup(i), T) for i in 1:N] # embedding into group ring of BN RBN = GroupRing(BN) RFFFF_projs = [central_projection(GroupRing(BN.N), g->epsilon(i,g), T) for i in 0:BN.P.n] Qs = [RBN(q, g -> BN(g)) for q in RFFFF_projs] function incl(k::Int, g::perm, WP::WreathProduct=BN) @assert length(g.d) + k <= WP.P.n arr = [1:k; g.d .+ k; (length(g.d)+k+1):WP.P.n] return WP(WP.P(arr)) end all_projs=[Qs[1]*RBN(p, g-> incl(0,g)) for p in SNprojs_nc[N]] for i in 1:N-1 Sk_first = [RBN(p, g->incl(0,g)) for p in SNprojs_nc[i]] Sk_last = [RBN(p, g->incl(i,g)) for p in SNprojs_nc[N-i]] append!(all_projs, [Qs[i+1]*p1*p2 for (p1,p2) in Base.product(Sk_first,Sk_last)]) end append!(all_projs, [Qs[N+1]*RBN(p, g-> incl(0,g)) for p in SNprojs_nc[N]]) return all_projs end function orthSVD(M::AbstractMatrix) M = full(M) # matrixRank = rank(M) fact = svdfact(M) sings = fact[:S] # @show sings[sings.>1e-14] M_rank = sum(fact[:S] .> maximum(size(M))*eps(eltype(fact[:S]))) Ufactor = fact[:U] return Ufactor[:,1:M_rank] end function Uπ_matrices(P_matrices; orth=orthSVD) U_p_matrices = Vector{Array{Float64,2}}() @showprogress "Computing Uπ mats..." for (i,p_mat) in enumerate(P_matrices) U_p = orth(p_mat) push!(U_p_matrices, U_p) end return U_p_matrices end function main(N::Int) name = "test" # SOutF$(N)_E4 isdir(name) || mkdir(name) SOutFN = AutGroup(FreeGroup(N), special=true, outer=true) S = generators(SOutFN); S = [S; [inv(s) for s in S]] @show S info("Generating ball of radius 4") @time E4, sizes = generate_balls(S, SOutFN(), radius=4); info("Reverse dict") @time E_dict = GroupRings.reverse_dict(E4) BN = WreathProduct(Nemo.FiniteField(2,1, "a")[1], PermutationGroup(N)) if !isfile(joinpath(name, "orbits.jld")) info("Decomposing E into orbits of B$(N)") @time orbs = orbit_decomposition(BN, E4, E_dict) @assert sum(length(o) for o in orbs) == length(E4) save(joinpath(name, "orbits.jld"), "orbits", orbs) end info("Action matrices") pm = GroupRings.create_pm(E4, E_dict, sizes[2], twisted=true) RSOutFN = GroupRing(SOutFN, E4, E_dict, pm) PropertyT.splaplacian(RSOutFN, S) E2 = E4[1:sizes[2]] @time BNactionE_mreps = action_mreps(BN, E2, E_dict) save(joinpath(name, "matrix_reps.jld"), "matrix_reps", BNactionE_mreps) info("Projections") @time BN_mps = rankOne_projections(BN); @time π_E_projections = @showprogress [Cstar_repr(p, BNactionE_mreps) for p in BN_mps] info("Uπs...") @time Uπs = Uπ_matrices(π_E_projections); @show multiplicities = [size(U,2) for U in Uπs]; @show dimensions = [Int(p[BN()]*Int(order(BN))) for p in BN_mps]; @assert dot(multiplicities, dimensions) == sizes[2] save(joinpath(name, "U_pis.jld"), "Uπs", Uπs, "dims", dimensions) end @time main(4)