using ArgParse using Nemo Nemo.setpermstyle(:cycles) using Groups using GroupRings using PropertyT import SCS.SCSSolver #= Note that the element α(i,j,k) = ϱ(i,j)*ϱ(i,k)*inv(ϱ(i,j))*inv(ϱ(i,k)), which surely belongs to ball of radius 4 in Aut(F₄) becomes trivial under the representation Aut(F₄) → GL₄(ℤ)⋉ℤ⁴ → GL₅(ℂ). Moreover, due to work of Potapchik and Rapinchuk [1] every real representation of Aut(Fₙ) into GLₘ(ℂ) (for m ≤ 2n-2) factors through GLₙ(ℤ)⋉ℤⁿ, so will have the same problem. We need a different approach: Here we actually compute in Aut(𝔽₄) =# function cpuinfo_physicalcores() maxcore = -1 for line in eachline("/proc/cpuinfo") if startswith(line, "core id") maxcore = max(maxcore, parse(Int, split(line, ':')[2])) end end maxcore < 0 && error("failure to read core ids from /proc/cpuinfo") return maxcore + 1 end function parse_commandline() s = ArgParseSettings() @add_arg_table s begin "--tol" help = "set numerical tolerance for the SDP solver (default: 1e-5)" arg_type = Float64 default = 1e-5 "--iterations" help = "set maximal number of iterations for the SDP solver (default: 20000)" arg_type = Int default = 20000 "--upper-bound" help = "Set an upper bound for the spectral gap (default: Inf)" arg_type = Float64 default = Inf "--cpus" help = "Set number of cpus used by solver (default: auto)" arg_type = Int required = false "-N" help = "Consider automorphisms of free group on N generators (default: N=3)" arg_type = Int default = 2 end return parse_args(s) end # const name = "SYM$N" # const upper_bound=factorial(N)-TOL^(1/5) # S() = generating_set_of_Sym(N) # name = "AutF$N" # S() = generating_set_of_AutF(N) function main() parsed_args = parse_commandline() if parsed_args["cpus"] ≠ nothing if parsed_args["cpus"] > cpuinfo_physicalcores() warn("Number of specified cores exceeds the physical core cound. Performance will suffer.") end Blas.set_num_threads(parsed_args["cpus"]) end tol = parsed_args["tol"] iterations = parsed_args["iterations"] # solver = SCSSolver(eps=tol, max_iters=iterations, verbose=true, linearsolver=SCS.Indirect) solver = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct) N = parsed_args["N"] upper_bound = parsed_args["upper-bound"] radius=2 name = "SOutF$N" name = "$(name)_$(upper_bound)_r=$radius" logger = PropertyT.setup_logging(name) info(logger, "Group: $name") info(logger, "Iterations: $iterations") info(logger, "Precision: $tol") info(logger, "Upper bound: $upper_bound") AutFN = AutGroup(FreeGroup(N), special=true, outer=true) S = generators(AutFN); S = unique([S; [inv(s) for s in S]]) Id = AutFN() @time PropertyT.check_property_T(name, S, Id, solver, upper_bound, tol, 2) return 0 end main()