using ArgParse function parse_commandline() args = ArgParseSettings() @add_arg_table args begin "--tol" help = "set numerical tolerance for the SDP solver" arg_type = Float64 default = 1e-14 "--iterations" help = "set maximal number of iterations for the SDP solver (default: 20000)" arg_type = Int default = 60000 "--upper-bound" help = "Set an upper bound for the spectral gap" arg_type = Float64 default = Inf "--cpus" help = "Set number of cpus used by solver (default: auto)" arg_type = Int required = false "-N" help = "Consider mapping class group of surface of genus N" arg_type = Int default = 2 "--radius" help = "Radius of ball B_r(e,S) to find solution over" arg_type = Int default = 4 "--warmstart" help = "Use warmstart.jl as the initial guess for SCS" action = :store_true end return parse_args(args) end const PARSEDARGS = parse_commandline() include("CPUselect.jl") # set_parallel_mthread(PARSEDARGS, workers=true) include("FPGroups_GAP.jl") module MCGrps using Groups using Nemo Comm(x,y) = x*y*x^-1*y^-1 function Group(N::Int) if N == 2 MCGroup = Groups.FPGroup(["a1","a2","a3","a4","a5"]); S = Nemo.gens(MCGroup) N = length(S) A = prod(reverse(S))*prod(S) relations = [ [Comm(S[i], S[j]) for i in 1:N for j in 1:N if abs(i-j) > 1]..., [S[i]*S[i+1]*S[i]*inv(S[i+1]*S[i]*S[i+1]) for i in 1:N-1]..., (S[1]*S[2]*S[3])^4*inv(S[5])^2, Comm(A, S[1]), A^2 ] relations = [relations; [inv(rel) for rel in relations]] Groups.add_rels!(MCGroup, Dict(rel => MCGroup() for rel in relations)) return MCGroup elseif N < 2 throw("Genus must be at least 2!") end MCGroup = Groups.FPGroup(["a$i" for i in 0:2N]) S = Nemo.gens(MCGroup) a0 = S[1] A = S[2:end] k = length(A) relations = [ [Comm(A[i], A[j]) for i in 1:k for j in 1:k if abs(i-j) > 1]..., [Comm(a0, A[i]) for i in 1:k if i != 4]..., [A[i]*A[(i+1)]*A[i]*inv(A[i+1]*A[i]*A[i+1]) for i in 1:k-1]..., A[4]*a0*A[4]*inv(a0*A[4]*a0) ] # 3-chain relation c = prod(reverse(A[1:4]))*prod(A[1:4]) b0 = c*a0*inv(c) push!(relations, (A[1]*A[2]*A[3])^4*inv(a0*b0)) # Lantern relation b1 = inv(A[4]*A[5]*A[3]*A[4])*a0*(A[4]*A[5]*A[3]*A[4]) b2 = inv(A[2]*A[3]*A[1]*A[2])*b1*(A[2]*A[3]*A[1]*A[2]) u = inv(A[6]*A[5])*b1*(A[6]*A[5]) x = prod(reverse(A[2:6]))*u*prod(inv.(A[1:4])) b3 = x*a0*inv(x) push!(relations, a0*b2*b1*inv(A[1]*A[3]*A[5]*b3)) # Hyperelliptic relation X = prod(reverse(A))*prod(A) function n(i::Int, b=b0) if i == 1 return A[1] elseif i == 2 return b else return w(i-2)*n(i-2)*w(i-2) end end function w(i::Int) (A[2i+4]*A[2i+3]*A[2i+2]* n(i+1))*(A[2i+1]*A[2i] *A[2i+2]*A[2i+1])* (A[2i+3]*A[2i+2]*A[2i+4]*A[2i+3])*( n(i+1)*A[2i+2]*A[2i+1]*A[2i] ) end push!(relations, X*n(N)*inv(n(N)*X)) relations = [relations; [inv(rel) for rel in relations]] Groups.add_rels!(MCGroup, Dict(rel => MCGroup() for rel in relations)) @show MCGroup return MCGroup end ############################################################################### # # Misc # ############################################################################### function groupname(parsed_args) N = parsed_args["N"] return groupname(N), N end groupname(N::Int) = "MCG$(N)" end #of module MCGrps using SCS.SCSSolver using PropertyT function main(GROUP, parsed_args) radius = parsed_args["radius"] tol = parsed_args["tol"] iterations = parsed_args["iterations"] upper_bound = parsed_args["upper-bound"] warm = parsed_args["warmstart"] name, N = GROUP.groupname(parsed_args) isdir(name) || mkdir(name) G = GROUP.Group(N) S = Nemo.gens(G) relations = [k*inv(v) for (k,v) in G.rels] prepare_pm_delta(name, GAP_groupcode(S, relations), radius) S = unique([S; [inv(s) for s in S]]) Id = G() logger = PropertyT.setup_logging(joinpath(name, "$(upper_bound)")) info(logger, "Group: $name") info(logger, "Iterations: $iterations") info(logger, "Precision: $tol") info(logger, "Upper bound: $upper_bound") info(logger, "Radius: $radius") info(logger, G) info(logger, "Symmetric generating set of size $(length(S))") info(logger, "Threads: $(Threads.nthreads())") info(logger, "Workers: $(workers())") solver = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct, alpha=1.9, acceleration_lookback=1) PropertyT.check_property_T(name, S, Id, solver, upper_bound, tol, radius, warm) return 0 end main(MCGrps, PARSEDARGS)