using ArgParse using SCS using Nemo using PropertyT using Groups ############################################################################### # # Action of WreathProductElems on Nemo.MatElem # ############################################################################### function matrix_emb(MM::MatSpace, g::WreathProductElem) parent(g).P.n == MM.cols == MM.rows || throw("No natural embedding of $(parent(g)) in ") powers = [(elt == parent(elt)() ? 0: 1) for elt in g.n.elts] elt = diagm([(-1)^(elt == parent(elt)() ? 0: 1) for elt in g.n.elts]) return MM(elt)*MM(Nemo.matrix_repr(g.p)') end function (g::WreathProductElem)(A::MatElem) G = matrix_emb(parent(A), g) inv_G = matrix_emb(parent(A), inv(g)) return G*A*inv_G end function (p::perm)(A::MatElem) length(p.d) == A.r == A.c || throw("Can't act via $p on matrix of size ($(A.r), $(A.c))") R = parent(A) return p*A*inv(p) end ############################################################################### # # Generating set # ############################################################################### function E(i::Int, j::Int, M::MatSpace, val=one(M.base_ring)) @assert i≠j m = one(M) m[i,j] = val return m end function SLsize(n,p) result = BigInt(1) for k in 0:n-1 result *= p^n - p^k end return div(result, p-1) end function SL_generatingset(n::Int, X::Bool=false) indexing = [(i,j) for i in 1:n for j in 1:n if i≠j] G = MatrixSpace(ZZ, n, n) if X S = [E(i,j,G,v) for (i,j) in indexing for v in [1, 100]] else S = [E(i,j,G,v) for (i,j) in indexing for v in [1]] end S = vcat(S, [inv(x) for x in S]) return G, unique(S) end function SL_generatingset(n::Int, p::Int, X::Bool=false) p == 0 && return SL_generatingset(n, X) (p > 1 && n > 1) || throw("Both n and p should be positive integers!") info("Size(SL($n,$p)) = $(SLsize(n,p))") F = ResidueRing(ZZ, p) G = MatrixSpace(F, n, n) indexing = [(i,j) for i in 1:n for j in 1:n if i≠j] S = [E(i, j, G, v) for (i,j) in indexing] S = vcat(S, [inv(x) for x in S]) return G, unique(S) end ############################################################################### # # Parsing command line # ############################################################################### function parse_commandline() settings = ArgParseSettings() @add_arg_table settings begin "--tol" help = "set numerical tolerance for the SDP solver (default: 1e-5)" arg_type = Float64 default = 1e-5 "--iterations" help = "set maximal number of iterations for the SDP solver (default: 20000)" arg_type = Int default = 20000 "--upper-bound" help = "Set an upper bound for the spectral gap (default: Inf)" arg_type = Float64 default = Inf "--cpus" help = "Set number of cpus used by solver (default: auto)" arg_type = Int required = false "-N" help = "Consider automorphisms of free group on N generators (default: N=2)" arg_type = Int default = 2 "-p" help = "Matrices over filed of p-elements (default: p=0 => over ZZ)" arg_type = Int default = 0 "--radius" help = "Find the decomposition over B_r(e,S)" arg_type = Int default = 2 "-X" help = "Matrices are over ZZ⟨X⟩" action = :store_true end return parse_args(settings) end ############################################################################### # # main # ############################################################################### function main() parsed_args = parse_commandline() N = parsed_args["N"] p = parsed_args["p"] if p == 0 if parsed_args["X"] dirname = "oSL$(N)Z⟨X⟩" else dirname = "oSL$(N)Z" end else dirname = "oSL$(N)_$p" end radius = parsed_args["radius"] tol = parsed_args["tol"] iterations = parsed_args["iterations"] upper_bound = parsed_args["upper-bound"] dirname = "$(dirname)_$(upper_bound)_r=$radius" isdir(dirname) || mkdir(dirname) logger = PropertyT.setup_logging(dirname) info(logger, "Group: $dirname") info(logger, "Iterations: $iterations") info(logger, "Precision: $tol") info(logger, "Upper bound: $upper_bound") G, S = SL_generatingset(N, p, parsed_args["X"]) info(logger, G) info(logger, "Symmetric generating set of size $(length(S))") info(logger, S) AutS = WreathProduct(FiniteField(2,1, "a")[1], PermutationGroup(N)) # AutS = PermutationGroup(N) solver = SCS.SCSSolver(eps=tol, max_iters=iterations, verbose=true, linearsolver=SCS.Direct) sett = Settings(dirname, N, G, S, AutS, radius, solver, upper_bound, tol) PropertyT.check_property_T(sett) end main()