using AbstractAlgebra using Groups using GroupRings using PropertyT using IntervalArithmetic using SCS using JLD include("sqadjop.jl") invalid_use_message = """You need to call this script in the parent folder of oSAutF5_r2 folder. Provide also the two (numerical) parameters: `-k` and `-lambda`""" if !(iseven(length(ARGS))) throw(invalid_use_message) end K = LAMBDA = nothing for i in 1:2:length(ARGS) if ARGS[i] == "-k" K = parse(Float64, ARGS[i+1]) elseif ARGS[i] == "-lambda" LAMBDA = parse(Float64, ARGS[i+1]) end end if K == nothing || LAMBDA == nothing throw(invalid_use_message) end info("Running checks for 36(Adj₅ + $K·Op₅) - $LAMBDA·Δ₅") G = AutGroup(FreeGroup(5), special=true) S = generating_set(G) const prefix = "oSAutF5_r2" isdir(prefix) || mkpath(prefix) const DELTA_FILE = joinpath(prefix,"delta.jld") const SQADJOP_FILE = joinpath(prefix, "SqAdjOp_coeffs.jld") const ORBITDATA_FILE = joinpath(prefix, "OrbitData.jld") const fullpath = joinpath(prefix, string(LAMBDA)) isdir(fullpath) || mkpath(fullpath) const SOLUTION_FILE = joinpath(fullpath, "solution.jld") info("Looking for delta.jld, SqAdjOp_coeffs.jld and OrbitData.jld in $prefix") if isfile(DELTA_FILE) && isfile(SQADJOP_FILE) && isfile(ORBITDATA_FILE) # cached Δ = PropertyT.loadGRElem(DELTA_FILE, G) RG = parent(Δ) orbit_data = load(ORBITDATA_FILE, "OrbitData") sq_c, adj_c, op_c = load(SQADJOP_FILE, "Sq", "Adj", "Op") sq = GroupRingElem(sq_c, RG) adj = GroupRingElem(adj_c, RG) op = GroupRingElem(op_c, RG); else info("Computing Laplacian") Δ = PropertyT.Laplacian(S, 2) PropertyT.saveGRElem(DELTA_FILE, Δ) RG = parent(Δ) info("Computing Sq, Adj, Op") @time sq, adj, op = Sq(RG), Adj(RG), Op(RG) save(SQADJOP_FILE, "Sq", sq.coeffs, "Adj", adj.coeffs, "Op", op.coeffs) info("Compute OrbitData") if !isfile(ORBITDATA_FILE) orbit_data = PropertyT.OrbitData(RG, sett.autS) save(ORBITDATA_FILE, "OrbitData", orbit_data) else orbit_data = load(ORBITDATA_FILE, "OrbitData") end end; orbit_data = PropertyT.decimate(orbit_data); elt = adj + K*op; info("Looking for solution.jld in $fullpath") if !isfile(SOLUTION_FILE) info("solution.jld not found, attempting to recreate one.") λ = Ps = ws = nothing SDP_problem, varλ, varP = PropertyT.SOS_problem(elt, Δ, orbit_data; upper_bound=LAMBDA) begin scs_solver = SCS.SCSSolver(linear_solver=SCS.Direct, eps=1e-12, max_iters=200_000, alpha=1.5, acceleration_lookback=1) JuMP.setsolver(SDP_problem, scs_solver) end i = 0 # for i in 1:6 status= :Unknown while status !=:Optimal i += 1 status, (λ, Ps, ws) = PropertyT.solve(SDP_problem, varλ, varP, ws); precision = abs(λ - LAMBDA) println("i = $i, \t precision = $precision") end info("Reconstructing P...") @time P = PropertyT.reconstruct(Ps, orbit_data); save(SOLUTION_FILE, "λ", λ, "P", P) end info("Checking the sum of squares solution for 36(Adj₅ + $K·Op₅) - $LAMBDA·Δ₅") P, λ = load(SOLUTION_FILE, "P", "λ") info("Computing Q = √P") @time const Q = real(sqrtm(P)); function SOS_residual(eoi::GroupRingElem, Q::Matrix) RG = parent(eoi) @time sos = PropertyT.compute_SOS(RG, Q); return eoi - sos end info("In floating point arithmetic:") EOI = elt - λ*Δ b = SOS_residual(EOI, Q) @show norm(b, 1); info("In interval arithmetic:") EOI_int = elt - @interval(λ)*Δ; Q_int = PropertyT.augIdproj(Q); @assert all([zero(eltype(Q)) in sum(view(Q_int, :, i)) for i in 1:size(Q_int, 2)]) b_int = SOS_residual(EOI_int, Q_int) @show norm(b_int, 1); λ_cert = @interval(λ) - 2^2*norm(b_int,1) info("λ is certified to be > ", λ_cert.lo) info("i.e Adj₅ + $K·Op₅ - $((λ_cert/36).lo)·Δ₅ ∈ Σ²₂ ISAut(F₅)")