GroupsWithPropertyT/positivity/check_positivity.jl

198 lines
5.9 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using AbstractAlgebra
using Groups
using GroupRings
using PropertyT
using SCS
solver(tol, iterations) =
SCSSolver(linearsolver=SCS.Direct,
eps=tol, max_iters=iterations,
alpha=1.95, acceleration_lookback=1)
include("../main.jl")
using PropertyTGroups
args = Dict("SAut" => 5, "upper-bound" => 50.0, "radius" => 2, "nosymmetry"=>false, "tol"=>1e-12, "iterations" =>200000, "warmstart" => true)
Gr = PropertyTGroups.PropertyTGroup(args)
sett = PropertyT.Settings(Gr, args,
solver(args["tol"], args["iterations"]))
@show sett
fullpath = PropertyT.fullpath(sett)
isdir(fullpath) || mkpath(fullpath)
# setup_logging(PropertyT.filename(fullpath, :fulllog), :fulllog)
function small_generating_set(RG::GroupRing{AutGroup{N}}, n) where N
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
rmuls = [Groups.rmul_autsymbol(i,j) for (i,j) in indexing]
lmuls = [Groups.lmul_autsymbol(i,j) for (i,j) in indexing]
gen_set = RG.group.([rmuls; lmuls])
return [gen_set; inv.(gen_set)]
end
function computeX(RG::GroupRing{AutGroup{N}}) where N
Tn = small_generating_set(RG, N-1)
= Int64
Δn = length(Tn)*one(RG, ) - RG(Tn, );
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
@time X = sum(σ(Δn)*sum(τ(Δn) for τ Alt_N if τ σ) for σ in Alt_N);
return X
end
function Sq(RG::GroupRing{AutGroup{N}}) where N
T2 = small_generating_set(RG, 2)
= Int64
Δ₂ = length(T2)*one(RG, ) - RG(T2, );
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
elt = sum(σ(Δ₂)^2 for σ in Alt_N)
return elt
end
function Adj(RG::GroupRing{AutGroup{N}}) where N
T2 = small_generating_set(RG, 2)
= Int64
Δ₂ = length(T2)*one(RG, ) - RG(T2, );
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
adj(σ::perm, τ::perm, i=1, j=2) = Set([σ[i], σ[j]]) Set([τ[i], τ[j]])
adj(σ::perm) = [τ for τ in Alt_N if length(adj(σ, τ)) == 1]
@time elt = sum(σ(Δ₂)*sum(τ(Δ₂) for τ in adj(σ)) for σ in Alt_N);
# return RG(elt.coeffs÷factorial(N-2)^2)
return elt
end
function Op(RG::GroupRing{AutGroup{N}}) where N
T2 = small_generating_set(RG, 2)
= Int64
Δ₂ = length(T2)*one(RG, ) - RG(T2, );
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
adj(σ::perm, τ::perm, i=1, j=2) = Set([σ[i], σ[j]]) Set([τ[i], τ[j]])
adj(σ::perm) = [τ for τ in Alt_N if length(adj(σ, τ)) == 0]
@time elt = sum(σ(Δ₂)*sum(τ(Δ₂) for τ in adj(σ)) for σ in Alt_N);
# return RG(elt.coeffs÷factorial(N-2)^2)
return elt
end
const ELT_FILE = joinpath(dirname(PropertyT.filename(sett, )), "SqAdjOp_coeffs.jld")
const WARMSTART_FILE = PropertyT.filename(sett, :warmstart)
if isfile(PropertyT.filename(sett,)) && isfile(ELT_FILE) &&
isfile(PropertyT.filename(sett, :OrbitData))
# cached
Δ = PropertyT.loadGRElem(PropertyT.filename(sett,), sett.G)
RG = parent(Δ)
orbit_data = load(PropertyT.filename(sett, :OrbitData), "OrbitData")
sq_c, adj_c, op_c = load(ELT_FILE, "Sq", "Adj", "Op")
# elt = ELT_FILE, sett.G)
sq = GroupRingElem(sq_c, RG)
adj = GroupRingElem(adj_c, RG)
op = GroupRingElem(op_c, RG);
else
info("Compute Laplacian")
Δ = PropertyT.Laplacian(sett.S, sett.radius)
RG = parent(Δ)
info("Compute Sq, Adj, Op")
@time sq, adj, op = Sq(RG), Adj(RG), Op(RG)
PropertyT.saveGRElem(PropertyT.filename(sett, ), Δ)
save(ELT_FILE, "Sq", sq.coeffs, "Adj", adj.coeffs, "Op", op.coeffs)
info("Compute OrbitData")
if !isfile(PropertyT.filename(sett, :OrbitData))
orbit_data = PropertyT.OrbitData(parent(Y), sett.autS)
save(PropertyT.filename(sett, :OrbitData), "OrbitData", orbit_data)
else
orbit_data = load(PropertyT.filename(sett, :OrbitData), "OrbitData")
end
end;
orbit_data = PropertyT.decimate(orbit_data);
elt = adj+2op;
const SOLUTION_FILE = PropertyT.filename(sett, :solution)
if !isfile(SOLUTION_FILE)
SDP_problem, varλ, varP = PropertyT.SOS_problem(elt, Δ, orbit_data; upper_bound=sett.upper_bound)
begin
using SCS
scs_solver = SCS.SCSSolver(linearsolver=SCS.Direct,
eps=sett.tol,
max_iters=args["iterations"],
alpha=1.95,
acceleration_lookback=1)
JuMP.setsolver(SDP_problem, scs_solver)
end
λ = Ps = nothing
ws = PropertyT.warmstart(sett)
# using ProgressMeter
# @showprogress "Running SDP optimization step... " for i in 1:args["repetitions"]
while true
λ, Ps, ws = PropertyT.solve(PropertyT.filename(sett, :solverlog),
SDP_problem, varλ, varP, ws);
if all((!isnan).(ws[1]))
save(WARMSTART_FILE, "warmstart", ws, "λ", λ, "Ps", Ps)
save(WARMSTART_FILE[1:end-4]*"_$(now()).jld", "warmstart", ws, "λ", λ, "Ps", Ps)
else
warn("No valid solution was saved!")
end
end
info("Reconstructing P...")
@time P = PropertyT.reconstruct(Ps, orbit_data);
save(SOLUTION_FILE, "λ", λ, "P", P)
end
P, λ = load(SOLUTION_FILE, "P", "λ")
@show λ;
@time const Q = real(sqrtm(P));
function SOS_residual(eoi::GroupRingElem, Q::Matrix)
RG = parent(eoi)
@time sos = PropertyT.compute_SOS(RG, Q);
return eoi - sos
end
info("Floating Point arithmetic:")
EOI = elt - λ*Δ
b = SOS_residual(EOI, Q)
@show norm(b, 1);
info("Interval arithmetic:")
using IntervalArithmetic
Qint = PropertyT.augIdproj(Q);
@assert all([zero(eltype(Q)) in sum(view(Qint, :, i)) for i in 1:size(Qint, 2)])
EOI_int = elt - @interval(λ)*Δ;
Q_int = PropertyT.augIdproj(Q);
@assert all([zero(eltype(Q)) in sum(view(Q_int, :, i)) for i in 1:size(Q_int, 2)])
b_int = SOS_residual(EOI_int, Q_int)
@show norm(b_int, 1);
info("λ is certified to be > ", (@interval(λ) - 2^2*norm(b_int,1)).lo)