70 lines
2.0 KiB
Julia
70 lines
2.0 KiB
Julia
struct SpecialAutomorphismGroup <: SymmetricGroup
|
|
args::Dict{String,Any}
|
|
group::AutGroup
|
|
|
|
function SpecialAutomorphismGroup(args::Dict)
|
|
N = args["N"]
|
|
return new(args, AutGroup(FreeGroup(N), special=true))
|
|
end
|
|
end
|
|
|
|
function name(G::SpecialAutomorphismGroup)
|
|
N = G.args["N"]
|
|
|
|
if G.args["nosymmetry"]
|
|
return "SAutF$(N)"
|
|
else
|
|
return "oSAutF$(N)"
|
|
end
|
|
end
|
|
|
|
group(G::SpecialAutomorphismGroup) = G.group
|
|
|
|
function generatingset(G::SpecialAutomorphismGroup)
|
|
S = gens(group(G));
|
|
return unique([S; inv.(S)])
|
|
end
|
|
|
|
function autS(G::SpecialAutomorphismGroup)
|
|
N = G.args["N"]
|
|
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
|
|
end
|
|
|
|
###############################################################################
|
|
#
|
|
# Action of WreathProductElems on AutGroupElem
|
|
#
|
|
###############################################################################
|
|
|
|
function AutFG_emb(A::AutGroup, g::WreathProductElem)
|
|
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
|
|
parent(g).P.n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A")
|
|
elt = A()
|
|
Id = parent(g.n.elts[1])()
|
|
flips = Groups.AutSymbol[Groups.flip_autsymbol(i) for i in 1:length(g.p.d) if g.n.elts[i] != Id]
|
|
Groups.r_multiply!(elt, flips, reduced=false)
|
|
Groups.r_multiply!(elt, [Groups.perm_autsymbol(g.p)])
|
|
return elt
|
|
end
|
|
|
|
function AutFG_emb(A::AutGroup, p::perm)
|
|
isa(A.objectGroup, FreeGroup) || throw("Not an Aut(Fₙ)")
|
|
parent(p).n == length(A.objectGroup.gens) || throw("No natural embedding of $(parent(g)) into $A")
|
|
return A(Groups.perm_autsymbol(p))
|
|
end
|
|
|
|
function (g::WreathProductElem)(a::Groups.Automorphism)
|
|
A = parent(a)
|
|
g = AutFG_emb(A,g)
|
|
res = A()
|
|
Groups.r_multiply!(res, g.symbols, reduced=false)
|
|
Groups.r_multiply!(res, a.symbols, reduced=false)
|
|
Groups.r_multiply!(res, [inv(s) for s in reverse!(g.symbols)])
|
|
return res
|
|
end
|
|
|
|
function (p::perm)(a::Groups.Automorphism)
|
|
g = AutFG_emb(parent(a),p)
|
|
return g*a*inv(g)
|
|
end
|