137 lines
3.0 KiB
Julia
137 lines
3.0 KiB
Julia
import Primes: isprime
|
|
|
|
using Mods
|
|
|
|
function SL_generatingset(n::Int)
|
|
|
|
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
|
|
|
S = [E(i,j,N=n) for (i,j) in indexing];
|
|
S = vcat(S, [convert(Array{Int,2},x') for x in S]);
|
|
S = vcat(S, [convert(Array{Int,2},inv(x)) for x in S]);
|
|
return unique(S)
|
|
end
|
|
|
|
function E(i::Int, j::Int; val=1, N::Int=3, mod=Inf)
|
|
@assert i≠j
|
|
m = eye(Int, N)
|
|
m[i,j] = val
|
|
if mod == Inf
|
|
return m
|
|
else
|
|
return [Mod(x,mod) for x in m]
|
|
end
|
|
end
|
|
|
|
function cofactor(i,j,M)
|
|
z1 = ones(Bool,size(M,1))
|
|
z1[i] = false
|
|
|
|
z2 = ones(Bool,size(M,2))
|
|
z2[j] = false
|
|
|
|
return M[z1,z2]
|
|
end
|
|
|
|
import Base.LinAlg.det
|
|
|
|
function det(M::Array{Mod,2})
|
|
if size(M,1) ≠ size(M,2)
|
|
d = Mod(0,M[1,1].mod)
|
|
elseif size(M,1) == 2
|
|
d = M[1,1]*M[2,2] - M[1,2]*M[2,1]
|
|
else
|
|
d = zero(eltype(M))
|
|
for i in 1:size(M,1)
|
|
d += (-1)^(i+1)*M[i,1]*det(cofactor(i,1,M))
|
|
end
|
|
end
|
|
# @show (M, d)
|
|
return d
|
|
end
|
|
|
|
function adjugate(M)
|
|
K = similar(M)
|
|
for i in 1:size(M,1), j in 1:size(M,2)
|
|
K[j,i] = (-1)^(i+j)*det(cofactor(i,j,M))
|
|
end
|
|
return K
|
|
end
|
|
|
|
import Base: inv, one, zero, *
|
|
|
|
one(::Type{Mod}) = 1
|
|
zero(::Type{Mod}) = 0
|
|
zero(x::Mod) = Mod(x.mod)
|
|
|
|
function inv(M::Array{Mod,2})
|
|
d = det(M)
|
|
d ≠ 0*d || thow(ArgumentError("Matrix is not invertible!"))
|
|
return inv(det(M))*adjugate(M)
|
|
return adjugate(M)
|
|
end
|
|
|
|
function SL_generatingset(n::Int, p::Int)
|
|
(p > 1 && n > 1) || throw(ArgumentError("Both n and p should be integers!"))
|
|
isprime(p) || throw(ArgumentError("p should be a prime number!"))
|
|
|
|
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
|
S = [E(i,j, N=n, mod=p) for (i,j) in indexing]
|
|
S = vcat(S, [inv(s) for s in S])
|
|
S = vcat(S, [permutedims(x, [2,1]) for x in S]);
|
|
|
|
return unique(S)
|
|
end
|
|
|
|
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})
|
|
result = Vector{T}()
|
|
for u in U
|
|
for v in V
|
|
push!(result, u*v)
|
|
end
|
|
end
|
|
return unique(result)
|
|
end
|
|
|
|
function ΔandSDPconstraints(identity, S)
|
|
B₁ = vcat([identity], S)
|
|
B₂ = products(B₁, B₁);
|
|
B₃ = products(B₁, B₂);
|
|
B₄ = products(B₁, B₃);
|
|
@assert B₄[1:length(B₂)] == B₂
|
|
|
|
product_matrix = create_product_matrix(B₄,length(B₂));
|
|
sdp_constraints = constraints_from_pm(product_matrix, length(B₄))
|
|
L_coeff = splaplacian_coeff(S, B₂, length(B₄));
|
|
Δ = GroupAlgebraElement(L_coeff, product_matrix)
|
|
|
|
return Δ, sdp_constraints
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
|
|
using GroupAlgebras
|
|
using PropertyT
|
|
|
|
const N = 3
|
|
|
|
# const name = "SL$(N)Z"
|
|
const name = "SL3Z-0.279"
|
|
const ID = eye(Int, N)
|
|
S() = SL_generatingset(N)
|
|
const upper_bound=0.27
|
|
|
|
|
|
# const p = 7
|
|
# const upper_bound=0.738 # (N,p) = (3,7)
|
|
|
|
# const name = "SL($N,$p)"
|
|
# const ID = [Mod(x,p) for x in eye(Int,N)]
|
|
# S() = SL_generatingset(N, p)
|
|
|
|
BLAS.set_num_threads(4)
|
|
@time PropertyT.check_property_T(name, ID, S; verbose=true, tol=1e-8, upper_bound=upper_bound)
|