133 lines
3.8 KiB
Julia
133 lines
3.8 KiB
Julia
###############################################################################
|
||
#
|
||
# Characters of PermutationGroup
|
||
#
|
||
###############################################################################
|
||
|
||
function chars(G::PermutationGroup)
|
||
permtype_unsorted(σ::Nemo.perm) = [length(c) for c in cycles(σ)]
|
||
permtype(σ::Nemo.perm) = sort(permtype_unsorted(σ))
|
||
|
||
χ_id(σ::Nemo.perm) = 1
|
||
|
||
χ_sgn(σ::Nemo.perm) = (-1)^parity(σ)
|
||
|
||
function χ_reg(σ::Nemo.perm)
|
||
fixed_points = countnz([(x == y? 1 : 0) for (x,y) in enumerate(σ.d)])
|
||
return fixed_points - 1
|
||
end
|
||
|
||
χ_regsgn(σ::Nemo.perm) = (-1)^parity(σ)*χ_reg(σ)
|
||
|
||
function χ_regviaS3(σ::Nemo.perm)
|
||
@assert parent(σ).n == 4
|
||
t = permtype(σ)
|
||
if t == [1,1,1,1]
|
||
result = 2
|
||
elseif t == [2,2]
|
||
result = 2
|
||
elseif t == [1,3]
|
||
result = -1
|
||
else
|
||
result = 0
|
||
end
|
||
return result
|
||
end
|
||
|
||
chars = [χ_id, χ_sgn, χ_regviaS3, χ_reg, χ_regsgn]
|
||
|
||
if G.n == 1
|
||
return chars[1:1]
|
||
elseif G.n == 2
|
||
return chars[1:2]
|
||
elseif G.n == 3
|
||
return [chars[1:2]..., chars[4]]
|
||
elseif G.n == 4
|
||
return chars[1:5]
|
||
else
|
||
throw("Characters for $G unknown!")
|
||
end
|
||
end
|
||
|
||
###############################################################################
|
||
#
|
||
# Character of DirectProducts
|
||
#
|
||
###############################################################################
|
||
|
||
function epsilon(i, g::DirectProducts.DirectProductGroupElem)
|
||
return reduce(*, 1, ((-1)^isone(g.elts[j]) for j in 1:i))
|
||
end
|
||
|
||
###############################################################################
|
||
#
|
||
# Projections
|
||
#
|
||
###############################################################################
|
||
|
||
function central_projection(RG::GroupRing, char::Function, T::Type=Rational{Int})
|
||
result = RG(T)
|
||
for g in RG.basis
|
||
result[g] = char(g)
|
||
end
|
||
return convert(T, char(RG.group())//Int(order(RG.group))*result)
|
||
end
|
||
|
||
function rankOne_projections(G::PermutationGroup, T::Type=Rational{Int})
|
||
RG = GroupRing(G)
|
||
projections = [central_projection(RG, χ, T) for χ in chars(G)]
|
||
|
||
if G.n == 1 || G.n == 2
|
||
return projections
|
||
elseif G.n == 3
|
||
rankone_projs = [
|
||
projections[1],
|
||
projections[2],
|
||
1//2*(one(RG) - RG(RG.group([2,1,3])))*projections[3]
|
||
]
|
||
return rankone_projs
|
||
elseif G.n == 4
|
||
rankone_projs = [
|
||
projections[1],
|
||
projections[2],
|
||
1//2*(one(RG) - RG(RG.group([2,1,3,4])))*projections[3],
|
||
1//2*(one(RG) - RG(RG.group([2,1,3,4])))*projections[4],
|
||
1//2*(one(RG) + RG(RG.group([2,1,3,4])))*projections[5]]
|
||
return rankone_projs
|
||
else
|
||
throw("Rank-one projections for $G unknown!")
|
||
end
|
||
end
|
||
|
||
function rankOne_projections(BN::WreathProducts.WreathProduct, T::Type=Rational{Int})
|
||
|
||
N = BN.P.n
|
||
# projections as elements of the group rings RSₙ
|
||
SNprojs_nc = [rankOne_projections(PermutationGroup(i), T) for i in 1:N]
|
||
|
||
# embedding into group ring of BN
|
||
RBN = GroupRing(BN)
|
||
RFFFF_projs = [central_projection(GroupRing(BN.N), g->epsilon(i,g), T)
|
||
for i in 0:BN.P.n]
|
||
Qs = [RBN(q, g -> BN(g)) for q in RFFFF_projs]
|
||
|
||
function incl(k::Int, g::perm, WP::WreathProduct=BN)
|
||
@assert length(g.d) + k <= WP.P.n
|
||
arr = [1:k; g.d .+ k; (length(g.d)+k+1):WP.P.n]
|
||
return WP(WP.P(arr))
|
||
end
|
||
|
||
all_projs=[Qs[1]*RBN(p, g-> incl(0,g)) for p in SNprojs_nc[N]]
|
||
|
||
for i in 1:N-1
|
||
Sk_first = [RBN(p, g->incl(0,g)) for p in SNprojs_nc[i]]
|
||
Sk_last = [RBN(p, g->incl(i,g)) for p in SNprojs_nc[N-i]]
|
||
append!(all_projs, [Qs[i+1]*p1*p2
|
||
for (p1,p2) in Base.product(Sk_first,Sk_last)])
|
||
end
|
||
|
||
append!(all_projs, [Qs[N+1]*RBN(p, g-> incl(0,g)) for p in SNprojs_nc[N]])
|
||
|
||
return all_projs
|
||
end
|