GroupsWithPropertyT/SL3Z.jl
2017-03-13 16:18:42 +01:00

143 lines
3.1 KiB
Julia

using JLD
using JuMP
import Primes: isprime
import SCS: SCSSolver
import Mosek: MosekSolver
using Mods
using Groups
function SL_generatingset(n::Int)
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
S = [E(i,j,N=n) for (i,j) in indexing];
S = vcat(S, [convert(Array{Int,2},x') for x in S]);
S = vcat(S, [convert(Array{Int,2},inv(x)) for x in S]);
return unique(S)
end
function E(i::Int, j::Int; val=1, N::Int=3, mod=Inf)
@assert i≠j
m = eye(Int, N)
m[i,j] = val
if mod == Inf
return m
else
return [Mod(x,mod) for x in m]
end
end
function cofactor(i,j,M)
z1 = ones(Bool,size(M,1))
z1[i] = false
z2 = ones(Bool,size(M,2))
z2[j] = false
return M[z1,z2]
end
import Base.LinAlg.det
function det(M::Array{Mod,2})
if size(M,1) size(M,2)
d = Mod(0,M[1,1].mod)
elseif size(M,1) == 2
d = M[1,1]*M[2,2] - M[1,2]*M[2,1]
else
d = zero(eltype(M))
for i in 1:size(M,1)
d += (-1)^(i+1)*M[i,1]*det(cofactor(i,1,M))
end
end
# @show (M, d)
return d
end
function adjugate(M)
K = similar(M)
for i in 1:size(M,1), j in 1:size(M,2)
K[j,i] = (-1)^(i+j)*det(cofactor(i,j,M))
end
return K
end
import Base: inv, one, zero, *
one(::Type{Mod}) = 1
zero(::Type{Mod}) = 0
zero(x::Mod) = Mod(x.mod)
function inv(M::Array{Mod,2})
d = det(M)
d 0*d || thow(ArgumentError("Matrix is not invertible!"))
return inv(det(M))*adjugate(M)
return adjugate(M)
end
function SL_generatingset(n::Int, p::Int)
(p > 1 && n > 1) || throw(ArgumentError("Both n and p should be integers!"))
isprime(p) || throw(ArgumentError("p should be a prime number!"))
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
S = [E(i,j, N=n, mod=p) for (i,j) in indexing]
S = vcat(S, [inv(s) for s in S])
S = vcat(S, [permutedims(x, [2,1]) for x in S]);
return unique(S)
end
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})
result = Vector{T}()
for u in U
for v in V
push!(result, u*v)
end
end
return unique(result)
end
function ΔandSDPconstraints(identity, S)
B₁ = vcat([identity], S)
B₂ = products(B₁, B₁);
B₃ = products(B₁, B₂);
B₄ = products(B₁, B₃);
@assert B₄[1:length(B₂)] == B₂
product_matrix = create_product_matrix(B₄,length(B₂));
sdp_constraints = constraints_from_pm(product_matrix, length(B₄))
L_coeff = splaplacian_coeff(S, B₂, length(B₄));
Δ = GroupAlgebraElement(L_coeff, product_matrix)
return Δ, sdp_constraints
end
@everywhere push!(LOAD_PATH, "./")
using GroupAlgebras
include("property(T).jl")
const N = 3
const name = "SL$(N)Z"
const ID = eye(Int, N)
S() = SL_generatingset(N)
const upper_bound=0.27
# const p = 7
# const upper_bound=0.738 # (N,p) = (3,7)
# const name = "SL($N,$p)"
# const ID = [Mod(x,p) for x in eye(Int,N)]
# S() = SL_generatingset(N, p)
BLAS.set_num_threads(4)
@time check_property_T(name, ID, S; verbose=true, tol=1e-10, upper_bound=upper_bound)