.gitignore | ||
AutF4.jl | ||
AutFN.jl | ||
README.md | ||
SemiDirectProduct.jl | ||
SL.jl |
This repository contains code for computations in Certifying Numerical Estimates of Spectral Gaps.
Installing
To run the code You need julia-v0.5
(should work on v0.6
, but with warnings).
You also need to install julia packages: Nemo-v0.6.3
, ArgParse
. To do so in julia
's REPL run:
Pkg.update()
Pkg.add("Nemo")
Pkg.add("ArgParse")
Then clone the main repository of Groups.jl
, GroupRings.jl
and PropertyT.jl
:
Pkg.clone("https://git.wmi.amu.edu.pl/kalmar/Groups.jl.git")
Pkg.clone("https://git.wmi.amu.edu.pl/kalmar/GroupRings.jl.git")
Pkg.clone("https://git.wmi.amu.edu.pl/kalmar/PropertyT.jl.git")
Pkg.resolve()
This should resolve all dependencies (e.g. install JuMP
, SCS
, IntervalArithmetic
, JLD
, Memento
). Exit julia and finally clone this repository:
git clone https://git.wmi.amu.edu.pl/kalmar/GroupsWithPropertyT.git
cd GroupswithPropertyT
Running
To check that \Delta^2-\lambda\Delta
is not decomposable to a sum of hermitian squares of elements in the ball of radius 2
in SL(2,7)
run
julia SL.jl -N 2 -p 7 --radius 2 --iterations 100000
(~30 seconds, depending on hardware). The monotonous decreasing \lambda
during the optimisation is in column pri obj
(or dua obj
) of solver.log
.
Compare this to
julia SL.jl -N 2 -p 7 --radius 3 --iterations 100000
which finds \lambda \geq 0.5857
and decomposes \Delta^2-\lambda\Delta
into sum of 47
hermitian squares in less than 20 seconds (including certification).
If You see in the output (or in full.log
) that the upper end of the interval where \lVert\Delta^2 - \lambda\Delta - \sum{\xi_i}^*\xi_i\rVert_1
belongs to is too large (resulting in positive Floating point distance
, but negative The Augmentation-projected actual distance
), decrease the --tol
parameter, e.g.
julia SL.jl -N 2 -p 7 --radius 3 --iterations 100000 --tol 1e-9
to achieve a better estimate (the residuals $\ell_1$-norm should be around \|B_d(e))\|*tol
)
Help
julia SL.jl --help
usage: SL.jl [--tol TOL] [--iterations ITERATIONS]
[--upper-bound UPPER-BOUND] [--cpus CPUS] [-N N] [-p P]
[--radius RADIUS] [-h]
optional arguments:
--tol TOL set numerical tolerance for the SDP solver
(default: 1e-5) (type: Float64, default:
1.0e-5)
--iterations ITERATIONS
set maximal number of iterations for the SDP
solver (default: 20000) (type: Int64, default:
20000)
--upper-bound UPPER-BOUND
Set an upper bound for the spectral gap
(default: Inf) (type: Float64, default: Inf)
--cpus CPUS Set number of cpus used by solver (default:
auto) (type: Int64)
-N N Consider matrices of size N (default: N=3)
(type: Int64, default: 3)
-p P Matrices over filed of p-elements (default:
p=0 => over ZZ) (type: Int64, default: 0)
--radius RADIUS Find the decomposition over B_r(e,S) (type:
Int64, default: 2)
-h, --help show this help message and exit
Specific version of the article
To checkout the specific versions of packages used for Certifying Numerical Estimates of Spectral Gaps run (inside the cloned GroupswithPropertyT
)
git checkout 1703.09680v1
Unfortunately: You need to link ~/.julia/v0.5/GroupRings
to ~/.julia/v0.5/GroupAlgebras
due to change in the name of the package. Then run in julia
Pkg.checkout("GroupRings", "1703.09680v1")
Pkg.checkout("PropertyT", "1703.09680v1")
Pkg.resolve()