GroupsWithPropertyT/groups/speciallinear.jl

63 lines
1.4 KiB
Julia

struct SpecialLinearGroup{N} <: SymmetrizedGroup
group::AbstractAlgebra.Group
p::Int
X::Bool
end
function SpecialLinearGroup(args::Dict)
N = args["SL"]
p = args["p"]
X = args["X"]
if p == 0
G = MatrixSpace(Nemo.ZZ, N, N)
else
R = Nemo.NmodRing(UInt(p))
G = MatrixSpace(R, N, N)
end
return SpecialLinearGroup{N}(G, p, X)
end
function name(G::SpecialLinearGroup{N}) where N
if G.p == 0
R = (G.X ? "Z[x]" : "Z")
else
R = "F$(G.p)"
end
return SL($(G.N),$R)
end
group(G::SpecialLinearGroup) = G.group
function generatingset(G::SpecialLinearGroup{N}) where N
G.p > 0 && G.X && throw("SL(n, F_p[x]) not implemented")
SL = group(G)
return generatingset(SL, G.X)
end
# r is the injectivity radius of
# SL(n, Z[X]) -> SL(n, Z) induced by X -> 100
function generatingset(SL::MatSpace, X::Bool=false, r=5)
n = SL.cols
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
if !X
S = [E(idx[1],idx[2],SL) for idx in indexing]
else
S = [E(i,j,SL,v) for (i,j) in indexing for v in [1, 100*r]]
end
return unique([S; inv.(S)])
end
function E(i::Int, j::Int, M::MatSpace, val=one(M.base_ring))
@assert i≠j
m = one(M)
m[i,j] = val
return m
end
function autS(G::SpecialLinearGroup{N}) where N
return WreathProduct(PermutationGroup(2), PermutationGroup(N))
end