194 lines
5.6 KiB
Julia
194 lines
5.6 KiB
Julia
using AbstractAlgebra
|
||
using Groups
|
||
using GroupRings
|
||
using PropertyT
|
||
|
||
using SCS
|
||
solver(tol, iterations) =
|
||
SCSSolver(linearsolver=SCS.Direct,
|
||
eps=tol, max_iters=iterations,
|
||
alpha=1.95, acceleration_lookback=1)
|
||
|
||
include("../main.jl")
|
||
|
||
using PropertyTGroups
|
||
|
||
args = Dict("SAut" => 5, "upper-bound" => 50.0, "radius" => 2, "nosymmetry"=>false, "tol"=>1e-12, "iterations" =>200000, "warmstart" => true)
|
||
|
||
Gr = PropertyTGroups.PropertyTGroup(args)
|
||
sett = PropertyT.Settings(Gr, args,
|
||
solver(args["tol"], args["iterations"]))
|
||
|
||
@show sett
|
||
|
||
fullpath = PropertyT.fullpath(sett)
|
||
isdir(fullpath) || mkpath(fullpath)
|
||
# setup_logging(PropertyT.filename(fullpath, :fulllog), :fulllog)
|
||
|
||
function small_generating_set(RG::GroupRing{AutGroup{N}}, n) where N
|
||
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
||
|
||
rmuls = [Groups.rmul_autsymbol(i,j) for (i,j) in indexing]
|
||
lmuls = [Groups.lmul_autsymbol(i,j) for (i,j) in indexing]
|
||
gen_set = RG.group.([rmuls; lmuls])
|
||
|
||
return [gen_set; inv.(gen_set)]
|
||
end
|
||
|
||
function computeX(RG::GroupRing{AutGroup{N}}) where N
|
||
Tn = small_generating_set(RG, N-1)
|
||
|
||
ℤ = Int64
|
||
Δn = length(Tn)*one(RG, ℤ) - RG(Tn, ℤ);
|
||
|
||
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
|
||
|
||
@time X = sum(σ(Δn)*sum(τ(Δn) for τ ∈ Alt_N if τ ≠ σ) for σ in Alt_N);
|
||
return X
|
||
end
|
||
|
||
function Sq(RG::GroupRing{AutGroup{N}}) where N
|
||
T2 = small_generating_set(RG, 2)
|
||
ℤ = Int64
|
||
Δ₂ = length(T2)*one(RG, ℤ) - RG(T2, ℤ);
|
||
|
||
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
|
||
elt = sum(σ(Δ₂)^2 for σ in Alt_N)
|
||
return elt
|
||
end
|
||
|
||
function Adj(RG::GroupRing{AutGroup{N}}) where N
|
||
T2 = small_generating_set(RG, 2)
|
||
|
||
ℤ = Int64
|
||
Δ₂ = length(T2)*one(RG, ℤ) - RG(T2, ℤ);
|
||
|
||
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
|
||
|
||
adj(σ::perm, τ::perm, i=1, j=2) = Set([σ[i], σ[j]]) ∩ Set([τ[i], τ[j]])
|
||
adj(σ::perm) = [τ for τ in Alt_N if length(adj(σ, τ)) == 1]
|
||
|
||
@time elt = sum(σ(Δ₂)*sum(τ(Δ₂) for τ in adj(σ)) for σ in Alt_N);
|
||
# return RG(elt.coeffs÷factorial(N-2)^2)
|
||
return elt
|
||
end
|
||
|
||
function Op(RG::GroupRing{AutGroup{N}}) where N
|
||
T2 = small_generating_set(RG, 2)
|
||
|
||
ℤ = Int64
|
||
Δ₂ = length(T2)*one(RG, ℤ) - RG(T2, ℤ);
|
||
|
||
Alt_N = [g for g in elements(PermutationGroup(N)) if parity(g) == 0]
|
||
|
||
adj(σ::perm, τ::perm, i=1, j=2) = Set([σ[i], σ[j]]) ∩ Set([τ[i], τ[j]])
|
||
adj(σ::perm) = [τ for τ in Alt_N if length(adj(σ, τ)) == 0]
|
||
|
||
@time elt = sum(σ(Δ₂)*sum(τ(Δ₂) for τ in adj(σ)) for σ in Alt_N);
|
||
# return RG(elt.coeffs÷factorial(N-2)^2)
|
||
return elt
|
||
end
|
||
|
||
const ELT_FILE = joinpath(dirname(PropertyT.filename(sett, :Δ)), "SqAdjOp_coeffs.jld")
|
||
const WARMSTART_FILE = PropertyT.filename(sett, :warmstart)
|
||
|
||
if isfile(PropertyT.filename(sett,:Δ)) && isfile(ELT_FILE) &&
|
||
isfile(PropertyT.filename(sett, :OrbitData))
|
||
# cached
|
||
Δ = PropertyT.loadGRElem(PropertyT.filename(sett,:Δ), sett.G)
|
||
RG = parent(Δ)
|
||
orbit_data = load(PropertyT.filename(sett, :OrbitData), "OrbitData")
|
||
sq_c, adj_c, op_c = load(ELT_FILE, "Sq", "Adj", "Op")
|
||
# elt = ELT_FILE, sett.G)
|
||
sq = GroupRingElem(sq_c, RG)
|
||
adj = GroupRingElem(adj_c, RG)
|
||
op = GroupRingElem(op_c, RG);
|
||
else
|
||
info("Compute Laplacian")
|
||
Δ = PropertyT.Laplacian(sett.S, sett.radius)
|
||
RG = parent(Δ)
|
||
|
||
info("Compute Sq, Adj, Op")
|
||
@time sq, adj, op = Sq(RG), Adj(RG), Op(RG)
|
||
|
||
PropertyT.saveGRElem(PropertyT.filename(sett, :Δ), Δ)
|
||
save(ELT_FILE, "Sq", sq.coeffs, "Adj", adj.coeffs, "Op", op.coeffs)
|
||
|
||
info("Compute OrbitData")
|
||
if !isfile(PropertyT.filename(sett, :OrbitData))
|
||
orbit_data = PropertyT.OrbitData(parent(Y), sett.autS)
|
||
save(PropertyT.filename(sett, :OrbitData), "OrbitData", orbit_data)
|
||
else
|
||
orbit_data = load(PropertyT.filename(sett, :OrbitData), "OrbitData")
|
||
end
|
||
end;
|
||
|
||
|
||
|
||
orbit_data = PropertyT.decimate(orbit_data);
|
||
|
||
elt = adj+3op;
|
||
|
||
SDP_problem, varλ, varP = PropertyT.SOS_problem(elt, Δ, orbit_data; upper_bound=sett.upper_bound)
|
||
|
||
begin
|
||
using SCS
|
||
scs_solver = SCS.SCSSolver(linearsolver=SCS.Direct,
|
||
eps=sett.tol,
|
||
max_iters=args["iterations"],
|
||
alpha=1.95,
|
||
acceleration_lookback=1)
|
||
|
||
JuMP.setsolver(SDP_problem, scs_solver)
|
||
end
|
||
|
||
λ = Ps = nothing
|
||
ws = PropertyT.warmstart(sett)
|
||
|
||
# using ProgressMeter
|
||
|
||
# @showprogress "Running SDP optimization step... " for i in 1:args["repetitions"]
|
||
while true
|
||
λ, Ps, ws = PropertyT.solve(PropertyT.filename(sett, :solverlog),
|
||
SDP_problem, varλ, varP, ws);
|
||
|
||
if all((!isnan).(ws[1]))
|
||
save(WARMSTART_FILE, "warmstart", ws, "λ", λ, "Ps", Ps)
|
||
save(WARMSTART_FILE[1:end-4]*"_$(now()).jld", "warmstart", ws, "λ", λ, "Ps", Ps)
|
||
else
|
||
warn("No valid solution was saved!")
|
||
end
|
||
end
|
||
|
||
info("Reconstructing P...")
|
||
@time P = PropertyT.reconstruct(Ps, orbit_data);
|
||
save(PropertyT.filename(sett, :solution), "λ", λ, "P", P)
|
||
|
||
@time const Q = real(sqrtm(P));
|
||
|
||
function SOS_residual(eoi::GroupRingElem, Q::Matrix)
|
||
RG = parent(eoi)
|
||
@time sos = PropertyT.compute_SOS(RG, Q);
|
||
return eoi - sos
|
||
end
|
||
|
||
addprocs(4)
|
||
@everywhere using PropertyT
|
||
|
||
@show λ;
|
||
EOI = elt - λ*Δ
|
||
b = SOS_residual(EOI, Q)
|
||
@show norm(b, 1);
|
||
|
||
using IntervalArithmetic
|
||
Qint = PropertyT.augIdproj(Q);
|
||
@assert all([zero(eltype(Q)) in sum(view(Qint, :, i)) for i in 1:size(Qint, 2)])
|
||
|
||
EOI_int = elt - @interval(λ)*Δ;
|
||
Q_int = PropertyT.augIdproj(Q);
|
||
@assert all([zero(eltype(Q)) in sum(view(Q_int, :, i)) for i in 1:size(Q_int, 2)])
|
||
b_int = SOS_residual(EOI_int, Q_int)
|
||
@show norm(b_int, 1);
|
||
|
||
@interval(λ) - 2^2*norm(b_int,1)
|