GroupsWithPropertyT/main.jl

126 lines
3.4 KiB
Julia

include("logging.jl")
using AbstractAlgebra
using Nemo
using PropertyT
using Groups
using SCS.SCSSolver
# using Mosek
# using CSDP
# using SDPA
include("groups/Allgroups.jl")
using PropertyTGroups
function summarize(groupdir, iterations, tol, upper_bound, radius, G, S)
info("Group: $groupdir")
info("Iterations: $iterations")
info("Precision: $tol")
info("Upper bound: $upper_bound")
info("Radius: $radius")
info("Threads: $(Threads.nthreads())")
info("Workers: $(workers())")
info(string(G))
info("with generating set of size $(length(S))")
end
function params(Gr::SymmetrizedGroup)
radius = Gr.args["radius"]
tol = Gr.args["tol"]
iterations = Gr.args["iterations"]
upper_bound = Gr.args["upper-bound"]
warm = Gr.args["warmstart"]
N = Gr.args["N"]
return radius, tol, iterations, upper_bound, warm, N
end
function params(Gr::PropertyTGroup)
radius = Gr.args["radius"]
tol = Gr.args["tol"]
iterations = Gr.args["iterations"]
upper_bound = Gr.args["upper-bound"]
warm = Gr.args["warmstart"]
return radius, tol, iterations, upper_bound, warm
end
scs_solver(tol, iterations) = SCSSolver(eps=tol, max_iters=iterations, linearsolver=SCS.Direct, alpha=1.95, acceleration_lookback=1)
# solver = Mosek.MosekSolver(
# MSK_DPAR_INTPNT_CO_TOL_REL_GAP=tol,
# MSK_IPAR_INTPNT_MAX_ITERATIONS=iterations,
# QUIET=false)
# solver = CSDP.CSDPSolver(axtol=tol, atytol=tol, objtol=tol, minstepp=tol*10.0^-1, minstepd=tol*10.0^-1)
# solver = SDPA.SDPASolver(epsilonStar=tol, epsilonDash=tol)
function main(Gr::PropertyTGroup)
r = Gr.args["radius"]
ub = Gr.args["upper-bound"]
groupdir = "$(PropertyTGroups.name(Gr))_r$r"
isdir(groupdir) || mkdir(groupdir)
logfile = PropertyT.filename(joinpath(groupdir, string(ub)), :fulllog)
logger=setup_logging(logfile, :fulllog)
if Gr.args["nosymmetry"]
return main(Naive, Gr, dir=groupdir)
else
return main(Symmetrize, Gr, dir=groupdir)
end
end
function main(::Type{Symmetrize}, Gr::SymmetrizedGroup; dir=tempname())
radius, tol, iterations, upper_bound, warm, N = params(Gr)
G = PropertyTGroups.group(Gr)
S = PropertyTGroups.generatingset(Gr)
summarize(dir, iterations, tol, upper_bound, radius, G, S)
autS = PropertyTGroups.autS(Gr)
info("Symmetrising with $(autS)")
solver = scs_solver(tol, iterations)
sett = Settings(dir, N, G, S, autS,
radius, solver, upper_bound, tol, warm)
return PropertyT.check_property_T(sett)
end
function main(::Type{Naive}, Gr::SymmetrizedGroup; dir="")
radius, tol, iterations, upper_bound, warm, _ = params(Gr)
G = PropertyTGroups.group(Gr)
S = PropertyTGroups.generatingset(Gr)
summarize(dir, iterations, tol, upper_bound, radius, G, S)
solver = scs_solver(tol, iterations)
return PropertyT.check_property_T(dir, S,
solver, upper_bound, tol, radius, warm)
end
function main(::Type{Naive}, Gr::GAPGroup; dir="")
radius, tol, iterations, upper_bound, warm = params(Gr)
G = PropertyTGroups.group(Gr)
S = PropertyTGroups.generatingset(Gr)
relations = [k*inv(v) for (k,v) in G.rels]
prepare_pm_delta(dir, GAP_groupcode(S, relations), radius)
summarize(dir, iterations, tol, upper_bound, radius, G, S)
solver = scs_solver(tol, iterations)
return PropertyT.check_property_T(dir, S,
solver, upper_bound, tol, radius, warm)
end