153 lines
4.0 KiB
Julia
153 lines
4.0 KiB
Julia
using ArgParse
|
|
using GroupAlgebras
|
|
using PropertyT
|
|
|
|
using Nemo
|
|
|
|
import SCS.SCSSolver
|
|
|
|
|
|
function E(i::Int, j::Int, M::Nemo.MatSpace)
|
|
@assert i≠j
|
|
m = one(M)
|
|
m[i,j] = m[1,1]
|
|
return m
|
|
end
|
|
|
|
function SL_generatingset(n::Int)
|
|
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
|
G = Nemo.MatrixSpace(Nemo.ZZ, n,n)
|
|
S = [E(i,j,G) for (i,j) in indexing];
|
|
S = vcat(S, [transpose(x) for x in S]);
|
|
S = vcat(S, [inv(x) for x in S]);
|
|
return unique(S), one(G)
|
|
end
|
|
|
|
function SL_generatingset(n::Int, p::Int)
|
|
p == 0 && return SL_generatingset(n)
|
|
(p > 1 && n > 0) || throw(ArgumentError("Both n and p should be positive integers!"))
|
|
F = Nemo.ResidueRing(Nemo.ZZ, p)
|
|
G = Nemo.MatrixSpace(F, n,n)
|
|
indexing = [(i,j) for i in 1:n for j in 1:n if i≠j]
|
|
S = [E(i, j, G) for (i,j) in indexing]
|
|
S = vcat(S, [transpose(x) for x in S])
|
|
S = vcat(S, [inv(s) for s in S])
|
|
return unique(S), one(G)
|
|
end
|
|
|
|
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})
|
|
result = Vector{T}()
|
|
for u in U
|
|
for v in V
|
|
push!(result, u*v)
|
|
end
|
|
end
|
|
return unique(result)
|
|
end
|
|
|
|
function ΔandSDPconstraints(Id, S; radius::Int=4)
|
|
k = div(radius,2)
|
|
lengths = Vector{Int}()
|
|
S = vcat([Id], S)
|
|
B = S
|
|
push!(lengths,length(B))
|
|
for i in 2:radius
|
|
B = products(S, B);
|
|
push!(lengths, length(B))
|
|
end
|
|
k = div(radius,2)
|
|
basis = B[1:lengths[k]]
|
|
|
|
product_matrix = PropertyT.create_product_matrix(B,lengths[k]);
|
|
sdp_constraints = PropertyT.constraints_from_pm(product_matrix, length(B))
|
|
L_coeff = PropertyT.splaplacian_coeff(S, basis, length(B));
|
|
Δ = GroupAlgebraElement(L_coeff, product_matrix)
|
|
|
|
return Δ, sdp_constraints
|
|
end
|
|
|
|
#=
|
|
To use file property(T).jl (specifically: check_property_T function)
|
|
You need to define:
|
|
|
|
function ΔandSDPconstraints(identity, S):: (Δ, sdp_constraints)
|
|
|
|
=#
|
|
|
|
function cpuinfo_physicalcores()
|
|
maxcore = -1
|
|
for line in eachline("/proc/cpuinfo")
|
|
if startswith(line, "core id")
|
|
maxcore = max(maxcore, parse(Int, split(line, ':')[2]))
|
|
end
|
|
end
|
|
maxcore < 0 && error("failure to read core ids from /proc/cpuinfo")
|
|
return maxcore + 1
|
|
end
|
|
|
|
function parse_commandline()
|
|
s = ArgParseSettings()
|
|
|
|
@add_arg_table s begin
|
|
"--tol"
|
|
help = "set numerical tolerance for the SDP solver (default: 1e-5)"
|
|
arg_type = Float64
|
|
default = 1e-5
|
|
"--iterations"
|
|
help = "set maximal number of iterations for the SDP solver (default: 20000)"
|
|
arg_type = Int
|
|
default = 20000
|
|
"--upper-bound"
|
|
help = "Set an upper bound for the spectral gap (default: Inf)"
|
|
arg_type = Float64
|
|
default = Inf
|
|
"--cpus"
|
|
help = "Set number of cpus used by solver (default: auto)"
|
|
arg_type = Int
|
|
required = false
|
|
"-N"
|
|
help = "Consider matrices of size N (default: N=3)"
|
|
arg_type = Int
|
|
default = 3
|
|
"-p"
|
|
help = "Matrices over filed of p-elements (default: p=0 => over ZZ)"
|
|
arg_type = Int
|
|
default = 0
|
|
end
|
|
|
|
return parse_args(s)
|
|
end
|
|
|
|
function main()
|
|
|
|
|
|
parsed_args = parse_commandline()
|
|
|
|
tol = parsed_args["tol"]
|
|
iterations = parsed_args["iterations"]
|
|
|
|
solver = SCSSolver(eps=tol, max_iters=iterations, verbose=true)
|
|
|
|
N = parsed_args["N"]
|
|
upper_bound = parsed_args["upper-bound"]
|
|
p = parsed_args["p"]
|
|
if p == 0
|
|
name = "SL$(N)Z"
|
|
else
|
|
name = "SL$(N)_$p"
|
|
end
|
|
name = name*"-$(string(upper_bound))"
|
|
S() = SL_generatingset(N, p)
|
|
|
|
if parsed_args["cpus"] ≠ nothing
|
|
if parsed_args["cpus"] > cpuinfo_physicalcores()
|
|
warn("Number of specified cores exceeds the physical core cound. Performance will suffer.")
|
|
end
|
|
BLAS.set_num_threads(parsed_args["cpus"])
|
|
end
|
|
@time PropertyT.check_property_T(name, S, solver, upper_bound, tol)
|
|
return 0
|
|
end
|
|
|
|
main()
|